优化深度网络结构以提高深度网络学习中估计器算法的准确性

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Scientia Iranica Pub Date : 2023-08-23 DOI:10.24200/sci.2023.62337.7782
Hamideh Rezaei Nezhad, Farshid Keynia, Amir Sabagh Molahosseini
{"title":"优化深度网络结构以提高深度网络学习中估计器算法的准确性","authors":"Hamideh Rezaei Nezhad, Farshid Keynia, Amir Sabagh Molahosseini","doi":"10.24200/sci.2023.62337.7782","DOIUrl":null,"url":null,"abstract":"An optimization algorithm based on training and learning is formed based on the process of training and learning in a class. A deep neural network is one of the types of feedforward neural networks whose connection pattern among its neurons is inspired by the visual cortex of animals' brain. The present study considers decreasing prediction error for the types of time series and the uncertainty in estimation parameters, improving the structure of the deep neural network and increasing response speed in the proposed neural network method; besides, the competitive performance and the collaboration among the neurons of deep neural network are also increased. Selected data is related to Qeshm weather (suitable weather conditions to study our purpose) prediction during 2016 onwards. In this study, for the purpose of analyzing the prediction issue of power consumption of domestic expenses in the indefinite and severe fluctuation mode, we decided to combine two methods of Long Short-Term Memory and Convolutional Neural Network. For the training of the deep network, the BP algorithm is used.","PeriodicalId":21605,"journal":{"name":"Scientia Iranica","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Deep Networks Structure to Improve the Accuracy of estimator algorithm in Deep Networks learning\",\"authors\":\"Hamideh Rezaei Nezhad, Farshid Keynia, Amir Sabagh Molahosseini\",\"doi\":\"10.24200/sci.2023.62337.7782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An optimization algorithm based on training and learning is formed based on the process of training and learning in a class. A deep neural network is one of the types of feedforward neural networks whose connection pattern among its neurons is inspired by the visual cortex of animals' brain. The present study considers decreasing prediction error for the types of time series and the uncertainty in estimation parameters, improving the structure of the deep neural network and increasing response speed in the proposed neural network method; besides, the competitive performance and the collaboration among the neurons of deep neural network are also increased. Selected data is related to Qeshm weather (suitable weather conditions to study our purpose) prediction during 2016 onwards. In this study, for the purpose of analyzing the prediction issue of power consumption of domestic expenses in the indefinite and severe fluctuation mode, we decided to combine two methods of Long Short-Term Memory and Convolutional Neural Network. For the training of the deep network, the BP algorithm is used.\",\"PeriodicalId\":21605,\"journal\":{\"name\":\"Scientia Iranica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Iranica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24200/sci.2023.62337.7782\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Iranica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24200/sci.2023.62337.7782","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于课堂上的训练和学习过程,形成了基于训练和学习的优化算法。深度神经网络是一种前馈神经网络,其神经元之间的连接模式受动物大脑视觉皮层的启发。本文提出的神经网络方法考虑了减小时间序列类型的预测误差和估计参数的不确定性,改进深度神经网络的结构,提高响应速度;此外,深度神经网络的竞争性能和神经元之间的协作能力也有所提高。所选数据与2016年以后的Qeshm天气(适合研究我们目的的天气条件)预测有关。在本研究中,为了分析不确定剧烈波动模式下的家庭消费电量预测问题,我们决定结合长短期记忆和卷积神经网络两种方法。对于深度网络的训练,采用了BP算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimized Deep Networks Structure to Improve the Accuracy of estimator algorithm in Deep Networks learning
An optimization algorithm based on training and learning is formed based on the process of training and learning in a class. A deep neural network is one of the types of feedforward neural networks whose connection pattern among its neurons is inspired by the visual cortex of animals' brain. The present study considers decreasing prediction error for the types of time series and the uncertainty in estimation parameters, improving the structure of the deep neural network and increasing response speed in the proposed neural network method; besides, the competitive performance and the collaboration among the neurons of deep neural network are also increased. Selected data is related to Qeshm weather (suitable weather conditions to study our purpose) prediction during 2016 onwards. In this study, for the purpose of analyzing the prediction issue of power consumption of domestic expenses in the indefinite and severe fluctuation mode, we decided to combine two methods of Long Short-Term Memory and Convolutional Neural Network. For the training of the deep network, the BP algorithm is used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientia Iranica
Scientia Iranica 工程技术-工程:综合
CiteScore
2.90
自引率
7.10%
发文量
59
审稿时长
2 months
期刊介绍: The objectives of Scientia Iranica are two-fold. The first is to provide a forum for the presentation of original works by scientists and engineers from around the world. The second is to open an effective channel to enhance the level of communication between scientists and engineers and the exchange of state-of-the-art research and ideas. The scope of the journal is broad and multidisciplinary in technical sciences and engineering. It encompasses theoretical and experimental research. Specific areas include but not limited to chemistry, chemical engineering, civil engineering, control and computer engineering, electrical engineering, material, manufacturing and industrial management, mathematics, mechanical engineering, nuclear engineering, petroleum engineering, physics, nanotechnology.
期刊最新文献
A New Approach to Estimating Destinations in Open Automated Fare Collection Systems based on errors-against-errors strategy Shared autonomous vehicle with pooled service, a modal shift approach Analysis of waves subjected to mechanical force and voids source in an initially stressed magneto-elastic medium with corrugated and impedance boundary Numerical study of slip and Magnetohydrodynamics (MHD) in calendering process using non-Newtonian fluid An efficient biogas-base tri-generation of power, heating and cooling integrating inverted Brayton and ejector transcritical CO2 cycles: exergoeconomic evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1