太阳能光伏逆变器正弦脉宽调制控制器的建模与仿真,以减小开关损耗,提高系统效率

IF 1.2 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Archives of Electrical Engineering Pub Date : 2023-11-06 DOI:10.24425/aee.2022.141674
{"title":"太阳能光伏逆变器正弦脉宽调制控制器的建模与仿真,以减小开关损耗,提高系统效率","authors":"","doi":"10.24425/aee.2022.141674","DOIUrl":null,"url":null,"abstract":": With the extinction of fossil fuels and high increase in power demand, the necessity for renewable energy power generation has increased globally. Solar PV is one such renewable energy power generation, widely used these days in the power sector. The inverters used for power conversion suffer from power losses in the switching elements. This paper aims at the detailed analysis on switching losses in these inverters and also aims at increasing the efficiency of the inverter by reducing losses. Losses in these power electronic switches vary with their types. In this analysis the most widely used semiconductor switches like the insulated gate bipolar transistor (IGBT) and metal oxide semiconductor field effect transistor (MOSFET) are compared. Also using the sinusoidal pulse width modulation (SPWM) technique, improves the system efficiency considerably. Two SPWM-based single-phase inverters with the IGBT and MOSFET are designed and simulated in a MATLAB Simulink environment. The voltage drop and, thereby, the power loss across the switches are compared and analysed. The proposed technique shows that the SPWM inverter with the IGBT has lower power loss than the SPWM inverter with the MOSFET.","PeriodicalId":45464,"journal":{"name":"Archives of Electrical Engineering","volume":"44 7","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling and simulation of sinusoidal pulse width modulation controller for solar photovoltaic inverter to minimize the switching losses and improving the system efficiency\",\"authors\":\"\",\"doi\":\"10.24425/aee.2022.141674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": With the extinction of fossil fuels and high increase in power demand, the necessity for renewable energy power generation has increased globally. Solar PV is one such renewable energy power generation, widely used these days in the power sector. The inverters used for power conversion suffer from power losses in the switching elements. This paper aims at the detailed analysis on switching losses in these inverters and also aims at increasing the efficiency of the inverter by reducing losses. Losses in these power electronic switches vary with their types. In this analysis the most widely used semiconductor switches like the insulated gate bipolar transistor (IGBT) and metal oxide semiconductor field effect transistor (MOSFET) are compared. Also using the sinusoidal pulse width modulation (SPWM) technique, improves the system efficiency considerably. Two SPWM-based single-phase inverters with the IGBT and MOSFET are designed and simulated in a MATLAB Simulink environment. The voltage drop and, thereby, the power loss across the switches are compared and analysed. The proposed technique shows that the SPWM inverter with the IGBT has lower power loss than the SPWM inverter with the MOSFET.\",\"PeriodicalId\":45464,\"journal\":{\"name\":\"Archives of Electrical Engineering\",\"volume\":\"44 7\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/aee.2022.141674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/aee.2022.141674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling and simulation of sinusoidal pulse width modulation controller for solar photovoltaic inverter to minimize the switching losses and improving the system efficiency
: With the extinction of fossil fuels and high increase in power demand, the necessity for renewable energy power generation has increased globally. Solar PV is one such renewable energy power generation, widely used these days in the power sector. The inverters used for power conversion suffer from power losses in the switching elements. This paper aims at the detailed analysis on switching losses in these inverters and also aims at increasing the efficiency of the inverter by reducing losses. Losses in these power electronic switches vary with their types. In this analysis the most widely used semiconductor switches like the insulated gate bipolar transistor (IGBT) and metal oxide semiconductor field effect transistor (MOSFET) are compared. Also using the sinusoidal pulse width modulation (SPWM) technique, improves the system efficiency considerably. Two SPWM-based single-phase inverters with the IGBT and MOSFET are designed and simulated in a MATLAB Simulink environment. The voltage drop and, thereby, the power loss across the switches are compared and analysed. The proposed technique shows that the SPWM inverter with the IGBT has lower power loss than the SPWM inverter with the MOSFET.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Electrical Engineering
Archives of Electrical Engineering ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.40
自引率
53.80%
发文量
0
审稿时长
18 weeks
期刊介绍: The journal publishes original papers in the field of electrical engineering which covers, but not limited to, the following scope: - Control - Electrical machines and transformers - Electrical & magnetic fields problems - Electric traction - Electro heat - Fuel cells, micro machines, hybrid vehicles - Nondestructive testing & Nondestructive evaluation - Electrical power engineering - Power electronics
期刊最新文献
Efficient cloud-based digital-physical testing method for feeder automation system in electrical power distribution network 148853 Optimal size and location of dispatchable distributed generators in an autonomous microgrid using Honey Badger algorithm Risk of irreversible demagnetisation under transient states of the line start permanent magnet synchronous motor taking into account magnet temperature Solar power and multi-battery for new configuration DC microgrid using centralized control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1