{"title":"优化共享微服务的资源管理:一个可扩展的系统设计","authors":"Shutian Luo, Chenyu Lin, Kejiang Ye, Guoyao Xu, Liping Zhang, Guodong Yang, Huanle Xu, Chengzhong Xu","doi":"10.1145/3631607","DOIUrl":null,"url":null,"abstract":"A common approach to improving resource utilization in data centers is to adaptively provision resources based on the actual workload. One fundamental challenge of doing this in microservice management frameworks, however, is that different components of a service can exhibit significant differences in their impact on end-to-end performance. To make resource management more challenging, a single microservice can be shared by multiple online services that have diverse workload patterns and SLA requirements. We present an efficient resource management system, namely Erms, for guaranteeing SLAs with high probability in shared microservice environments. Erms profiles microservice latency as a piece-wise linear function of the workload, resource usage, and interference. Based on this profiling, Erms builds resource scaling models to optimally determine latency targets for microservices with complex dependencies. Erms also designs new scheduling policies at shared microservices to further enhance resource efficiency. Experiments across microservice benchmarks as well as trace-driven simulations demonstrate that Erms can reduce SLA violation probability by 5 × and more importantly, lead to a reduction in resource usage by 1.6 ×, compared to state-of-the-art approaches.","PeriodicalId":50918,"journal":{"name":"ACM Transactions on Computer Systems","volume":"16 4","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Resource Management for Shared Microservices: A Scalable System Design\",\"authors\":\"Shutian Luo, Chenyu Lin, Kejiang Ye, Guoyao Xu, Liping Zhang, Guodong Yang, Huanle Xu, Chengzhong Xu\",\"doi\":\"10.1145/3631607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A common approach to improving resource utilization in data centers is to adaptively provision resources based on the actual workload. One fundamental challenge of doing this in microservice management frameworks, however, is that different components of a service can exhibit significant differences in their impact on end-to-end performance. To make resource management more challenging, a single microservice can be shared by multiple online services that have diverse workload patterns and SLA requirements. We present an efficient resource management system, namely Erms, for guaranteeing SLAs with high probability in shared microservice environments. Erms profiles microservice latency as a piece-wise linear function of the workload, resource usage, and interference. Based on this profiling, Erms builds resource scaling models to optimally determine latency targets for microservices with complex dependencies. Erms also designs new scheduling policies at shared microservices to further enhance resource efficiency. Experiments across microservice benchmarks as well as trace-driven simulations demonstrate that Erms can reduce SLA violation probability by 5 × and more importantly, lead to a reduction in resource usage by 1.6 ×, compared to state-of-the-art approaches.\",\"PeriodicalId\":50918,\"journal\":{\"name\":\"ACM Transactions on Computer Systems\",\"volume\":\"16 4\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3631607\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631607","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Optimizing Resource Management for Shared Microservices: A Scalable System Design
A common approach to improving resource utilization in data centers is to adaptively provision resources based on the actual workload. One fundamental challenge of doing this in microservice management frameworks, however, is that different components of a service can exhibit significant differences in their impact on end-to-end performance. To make resource management more challenging, a single microservice can be shared by multiple online services that have diverse workload patterns and SLA requirements. We present an efficient resource management system, namely Erms, for guaranteeing SLAs with high probability in shared microservice environments. Erms profiles microservice latency as a piece-wise linear function of the workload, resource usage, and interference. Based on this profiling, Erms builds resource scaling models to optimally determine latency targets for microservices with complex dependencies. Erms also designs new scheduling policies at shared microservices to further enhance resource efficiency. Experiments across microservice benchmarks as well as trace-driven simulations demonstrate that Erms can reduce SLA violation probability by 5 × and more importantly, lead to a reduction in resource usage by 1.6 ×, compared to state-of-the-art approaches.
期刊介绍:
ACM Transactions on Computer Systems (TOCS) presents research and development results on the design, implementation, analysis, evaluation, and use of computer systems and systems software. The term "computer systems" is interpreted broadly and includes operating systems, systems architecture and hardware, distributed systems, optimizing compilers, and the interaction between systems and computer networks. Articles appearing in TOCS will tend either to present new techniques and concepts, or to report on experiences and experiments with actual systems. Insights useful to system designers, builders, and users will be emphasized.
TOCS publishes research and technical papers, both short and long. It includes technical correspondence to permit commentary on technical topics and on previously published papers.