南极菌株灰黄青霉对低温胁迫的细胞响应

IF 0.9 4区 地球科学 Q4 ECOLOGY Polish Polar Research Pub Date : 2023-11-06 DOI:10.24425/ppr.2021.138587
{"title":"南极菌株灰黄青霉对低温胁迫的细胞响应","authors":"","doi":"10.24425/ppr.2021.138587","DOIUrl":null,"url":null,"abstract":": During the evolution organisms are subjected to the continuous impact of environmental factors. In recent years an increasing number of studies have focused on the physicochemical limits of life on Earth such as temperature, pressure, drought, salt content, pH, heavy metals, etc. Extreme environmental conditions disrupt the most important interactions that support the function and structure of biomolecules. For this reason, organisms inhabiting extreme habitats have recently become of particularly great interest. Although filamentous fungi are an important part of the polar ecosystem, information about their distribution and diversity, as well as their adaptation mechanisms, is insufficient. In the present study, the fungal strain Penicillium griseofulvum isolated from an Antarctic soil sample was used as a study model. The fungal cellular response against short term exposure to low temperature was observed. Our results clearly showed that short-term low temperature exposure caused oxidative stress in fungal cells and resulted in enhanced level of oxidative damaged proteins, accumulation of reserve carbohydrates and increased activity of the antioxidant enzyme defence. Ultrastructural changes in cell morphology were analysed. Different pattern of cell pathology provoked by the application of two stress temperatures was detected. Overall, this study aimed to observe the survival strategy of filamentous fungi in extremely cold habitats, and to acquire new knowledge about the relationship between low temperature and oxidative stress.","PeriodicalId":49682,"journal":{"name":"Polish Polar Research","volume":"21 9","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell response of Antarctic strain Penicillium griseofulvum against low temperature stress\",\"authors\":\"\",\"doi\":\"10.24425/ppr.2021.138587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": During the evolution organisms are subjected to the continuous impact of environmental factors. In recent years an increasing number of studies have focused on the physicochemical limits of life on Earth such as temperature, pressure, drought, salt content, pH, heavy metals, etc. Extreme environmental conditions disrupt the most important interactions that support the function and structure of biomolecules. For this reason, organisms inhabiting extreme habitats have recently become of particularly great interest. Although filamentous fungi are an important part of the polar ecosystem, information about their distribution and diversity, as well as their adaptation mechanisms, is insufficient. In the present study, the fungal strain Penicillium griseofulvum isolated from an Antarctic soil sample was used as a study model. The fungal cellular response against short term exposure to low temperature was observed. Our results clearly showed that short-term low temperature exposure caused oxidative stress in fungal cells and resulted in enhanced level of oxidative damaged proteins, accumulation of reserve carbohydrates and increased activity of the antioxidant enzyme defence. Ultrastructural changes in cell morphology were analysed. Different pattern of cell pathology provoked by the application of two stress temperatures was detected. Overall, this study aimed to observe the survival strategy of filamentous fungi in extremely cold habitats, and to acquire new knowledge about the relationship between low temperature and oxidative stress.\",\"PeriodicalId\":49682,\"journal\":{\"name\":\"Polish Polar Research\",\"volume\":\"21 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Polar Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ppr.2021.138587\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Polar Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ppr.2021.138587","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cell response of Antarctic strain Penicillium griseofulvum against low temperature stress
: During the evolution organisms are subjected to the continuous impact of environmental factors. In recent years an increasing number of studies have focused on the physicochemical limits of life on Earth such as temperature, pressure, drought, salt content, pH, heavy metals, etc. Extreme environmental conditions disrupt the most important interactions that support the function and structure of biomolecules. For this reason, organisms inhabiting extreme habitats have recently become of particularly great interest. Although filamentous fungi are an important part of the polar ecosystem, information about their distribution and diversity, as well as their adaptation mechanisms, is insufficient. In the present study, the fungal strain Penicillium griseofulvum isolated from an Antarctic soil sample was used as a study model. The fungal cellular response against short term exposure to low temperature was observed. Our results clearly showed that short-term low temperature exposure caused oxidative stress in fungal cells and resulted in enhanced level of oxidative damaged proteins, accumulation of reserve carbohydrates and increased activity of the antioxidant enzyme defence. Ultrastructural changes in cell morphology were analysed. Different pattern of cell pathology provoked by the application of two stress temperatures was detected. Overall, this study aimed to observe the survival strategy of filamentous fungi in extremely cold habitats, and to acquire new knowledge about the relationship between low temperature and oxidative stress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polish Polar Research
Polish Polar Research ECOLOGY-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
2.00
自引率
7.70%
发文量
0
审稿时长
>12 weeks
期刊介绍: The quarterly Polish Polar Research edited by the Committee on Polar Research of the Polish Academy of Sciences is an international journal publishing original research articles presenting the results of studies carried out in polar regions. All papers are peer-reviewed and published in English. The Editorial Advisory Board includes renowned scientist from Poland and from abroad.
期刊最新文献
Meteorological conditions on Kaffiøyra (NW Spitsbergen) in 2013–2017 and their connection with atmospheric circulation and sea ice extent Sea ice regime in the Kara Sea during 2003–2017 based on high-resolution satellite data Nothofagus and the associated palynoflora from the Late Cretaceous of Vega Island, Antarctic Peninsula The effect of sodium fluoride on seeds germination and morphophysiological changes in the seedlings of the Antarctic species Colobanthus quitensis (Kunth) Bartl.and the Subantarctic species Colobanthus apetalus (Labill.) Druce Effects of fuel spills on Arctic soil, 32 years later (Hornsund, Svalbard)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1