基于puf的轻量化栅极替换技术,通过功率分布分析减少信息泄漏

{"title":"基于puf的轻量化栅极替换技术,通过功率分布分析减少信息泄漏","authors":"","doi":"10.24425/ijet.2022.143881","DOIUrl":null,"url":null,"abstract":"— The major challenge faced by electronic device designers is to defend the system from attackers and malicious modules called Hardware Trojans and to deliver a secured design. Although there are many cryptographic preventive measures in place adversaries find different ways to attack the device. Differential Power Analysis (DPA) attack is a type of Side Channel Attacks, used by an attacker to analyze the power leakage in the circuit, through which the functionality of the circuit is extracted. To overcome this, a lightweight approach is proposed in this paper using, Wave Dynamic Differential Logic (WDDL) technique, without incurring any additional resource cost and power. The primary objective of WDDL is to make the power consumption constant of an entire circuit by restricting the leakage power. The alternate strategy used by an adversary is to leak the information through reverse engineering. The proposed work avoids this by using a bit sequencer and a modified butterfly PUF based randomizing architecture. A modified version of butterfly PUF is also proposed in this paper, and from various qualitative tests performed it is evident that this PUF can prevent information leakage. This work is validated on ISCAS 85, ISCAS 89 benchmark circuits and the results obtained indicate that the difference in leakage power is found to be very marginal.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"3 2","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight PUF-Based Gate Replacement Technique to Reduce Leakage of Information through Power Profile Analysis\",\"authors\":\"\",\"doi\":\"10.24425/ijet.2022.143881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"— The major challenge faced by electronic device designers is to defend the system from attackers and malicious modules called Hardware Trojans and to deliver a secured design. Although there are many cryptographic preventive measures in place adversaries find different ways to attack the device. Differential Power Analysis (DPA) attack is a type of Side Channel Attacks, used by an attacker to analyze the power leakage in the circuit, through which the functionality of the circuit is extracted. To overcome this, a lightweight approach is proposed in this paper using, Wave Dynamic Differential Logic (WDDL) technique, without incurring any additional resource cost and power. The primary objective of WDDL is to make the power consumption constant of an entire circuit by restricting the leakage power. The alternate strategy used by an adversary is to leak the information through reverse engineering. The proposed work avoids this by using a bit sequencer and a modified butterfly PUF based randomizing architecture. A modified version of butterfly PUF is also proposed in this paper, and from various qualitative tests performed it is evident that this PUF can prevent information leakage. This work is validated on ISCAS 85, ISCAS 89 benchmark circuits and the results obtained indicate that the difference in leakage power is found to be very marginal.\",\"PeriodicalId\":13922,\"journal\":{\"name\":\"International Journal of Electronics and Telecommunications\",\"volume\":\"3 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electronics and Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ijet.2022.143881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electronics and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ijet.2022.143881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lightweight PUF-Based Gate Replacement Technique to Reduce Leakage of Information through Power Profile Analysis
— The major challenge faced by electronic device designers is to defend the system from attackers and malicious modules called Hardware Trojans and to deliver a secured design. Although there are many cryptographic preventive measures in place adversaries find different ways to attack the device. Differential Power Analysis (DPA) attack is a type of Side Channel Attacks, used by an attacker to analyze the power leakage in the circuit, through which the functionality of the circuit is extracted. To overcome this, a lightweight approach is proposed in this paper using, Wave Dynamic Differential Logic (WDDL) technique, without incurring any additional resource cost and power. The primary objective of WDDL is to make the power consumption constant of an entire circuit by restricting the leakage power. The alternate strategy used by an adversary is to leak the information through reverse engineering. The proposed work avoids this by using a bit sequencer and a modified butterfly PUF based randomizing architecture. A modified version of butterfly PUF is also proposed in this paper, and from various qualitative tests performed it is evident that this PUF can prevent information leakage. This work is validated on ISCAS 85, ISCAS 89 benchmark circuits and the results obtained indicate that the difference in leakage power is found to be very marginal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
0
审稿时长
12 weeks
期刊最新文献
Optimization of Animal Detection in Thermal Images Using YOLO Architecture Efficient FPGA Implementation of Recursive Least Square Adaptive Filter Using Non- Restoring Division Algorithm Comparison of Wireless Data Transmission Protocols for Residential Water Meter Applications 147684 147700
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1