基于深度学习的LEACH无线传感器网络性能分析

{"title":"基于深度学习的LEACH无线传感器网络性能分析","authors":"","doi":"10.24425/ijet.2022.143888","DOIUrl":null,"url":null,"abstract":"—Thousands of low-power micro sensors make up Wireless Sensor Networks, and its principal role is to detect and report specified events to a base station. Due to bounded battery power these nodes are having very limited memory and processing capacity. Since battery replacement or recharge in sensor nodes is nearly impossible, power consumption becomes one of the most important design considerations in WSN. So one of the most important requirements in WSN is to increase battery life and network life time. Seeing as data transmission and reception consume the most energy, it’s critical to develop a routing protocol that addresses the WSN’s major problem. When it comes to sending aggregated data to the sink, hierarchical routing is critical. This research concentrates on a cluster head election system that rotates the cluster head role among nodes with greater energy levels than the others. We used a combination of LEACH and deep learning to extend the network life of the WSN in this study. In this proposed method, cluster head selection has been performed by Convolutional Neural Network (CNN). The comparison has been done between the proposed solution and LEACH, which shows the proposed solution increases the network lifetime and throughput.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"1 2","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of LEACH with Deep Learning in Wireless Sensor Networks\",\"authors\":\"\",\"doi\":\"10.24425/ijet.2022.143888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—Thousands of low-power micro sensors make up Wireless Sensor Networks, and its principal role is to detect and report specified events to a base station. Due to bounded battery power these nodes are having very limited memory and processing capacity. Since battery replacement or recharge in sensor nodes is nearly impossible, power consumption becomes one of the most important design considerations in WSN. So one of the most important requirements in WSN is to increase battery life and network life time. Seeing as data transmission and reception consume the most energy, it’s critical to develop a routing protocol that addresses the WSN’s major problem. When it comes to sending aggregated data to the sink, hierarchical routing is critical. This research concentrates on a cluster head election system that rotates the cluster head role among nodes with greater energy levels than the others. We used a combination of LEACH and deep learning to extend the network life of the WSN in this study. In this proposed method, cluster head selection has been performed by Convolutional Neural Network (CNN). The comparison has been done between the proposed solution and LEACH, which shows the proposed solution increases the network lifetime and throughput.\",\"PeriodicalId\":13922,\"journal\":{\"name\":\"International Journal of Electronics and Telecommunications\",\"volume\":\"1 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electronics and Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ijet.2022.143888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electronics and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ijet.2022.143888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Analysis of LEACH with Deep Learning in Wireless Sensor Networks
—Thousands of low-power micro sensors make up Wireless Sensor Networks, and its principal role is to detect and report specified events to a base station. Due to bounded battery power these nodes are having very limited memory and processing capacity. Since battery replacement or recharge in sensor nodes is nearly impossible, power consumption becomes one of the most important design considerations in WSN. So one of the most important requirements in WSN is to increase battery life and network life time. Seeing as data transmission and reception consume the most energy, it’s critical to develop a routing protocol that addresses the WSN’s major problem. When it comes to sending aggregated data to the sink, hierarchical routing is critical. This research concentrates on a cluster head election system that rotates the cluster head role among nodes with greater energy levels than the others. We used a combination of LEACH and deep learning to extend the network life of the WSN in this study. In this proposed method, cluster head selection has been performed by Convolutional Neural Network (CNN). The comparison has been done between the proposed solution and LEACH, which shows the proposed solution increases the network lifetime and throughput.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
0
审稿时长
12 weeks
期刊最新文献
Optimization of Animal Detection in Thermal Images Using YOLO Architecture Efficient FPGA Implementation of Recursive Least Square Adaptive Filter Using Non- Restoring Division Algorithm Comparison of Wireless Data Transmission Protocols for Residential Water Meter Applications 147684 147700
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1