大型新闻档案中的人脸检测、追踪与分类,用于关键政治人物分析

IF 4.7 2区 社会学 Q1 POLITICAL SCIENCE Political Analysis Pub Date : 2023-11-06 DOI:10.1017/pan.2023.33
Andreu Girbau, Tetsuro Kobayashi, Benjamin Renoust, Yusuke Matsui, Shin’ichi Satoh
{"title":"大型新闻档案中的人脸检测、追踪与分类,用于关键政治人物分析","authors":"Andreu Girbau, Tetsuro Kobayashi, Benjamin Renoust, Yusuke Matsui, Shin’ichi Satoh","doi":"10.1017/pan.2023.33","DOIUrl":null,"url":null,"abstract":"Abstract Analyzing the appearances of political figures in large-scale news archives is increasingly important with the growing availability of large-scale news archives and developments in computer vision. We present a deep learning-based method combining face detection, tracking, and classification, which is particularly unique because it does not require any re-training when targeting new individuals. Users can feed only a few images of target individuals to reliably detect, track, and classify them. Extensive validation of prominent political figures in two news archives spanning 10 to 20 years, one containing three U.S. cable news and the other including two major Japanese news programs, consistently shows high performance and flexibility of the proposed method. The codes are made readily available to the public.","PeriodicalId":48270,"journal":{"name":"Political Analysis","volume":"7 1","pages":"0"},"PeriodicalIF":4.7000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Face Detection, Tracking, and Classification from Large-Scale News Archives for Analysis of Key Political Figures\",\"authors\":\"Andreu Girbau, Tetsuro Kobayashi, Benjamin Renoust, Yusuke Matsui, Shin’ichi Satoh\",\"doi\":\"10.1017/pan.2023.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Analyzing the appearances of political figures in large-scale news archives is increasingly important with the growing availability of large-scale news archives and developments in computer vision. We present a deep learning-based method combining face detection, tracking, and classification, which is particularly unique because it does not require any re-training when targeting new individuals. Users can feed only a few images of target individuals to reliably detect, track, and classify them. Extensive validation of prominent political figures in two news archives spanning 10 to 20 years, one containing three U.S. cable news and the other including two major Japanese news programs, consistently shows high performance and flexibility of the proposed method. The codes are made readily available to the public.\",\"PeriodicalId\":48270,\"journal\":{\"name\":\"Political Analysis\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Political Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/pan.2023.33\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLITICAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Political Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/pan.2023.33","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLITICAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着大规模新闻档案的日益普及和计算机视觉技术的发展,分析政治人物在大型新闻档案中的形象显得越来越重要。我们提出了一种结合人脸检测、跟踪和分类的基于深度学习的方法,这种方法特别独特,因为它在针对新个体时不需要任何重新训练。用户可以只提供目标个体的少量图像来可靠地检测、跟踪和分类他们。通过对两个新闻档案中杰出政治人物的广泛验证,其中一个包含三个美国有线电视新闻,另一个包括两个主要的日本新闻节目,一致显示了所提出方法的高性能和灵活性。这些守则可供公众随时索取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Face Detection, Tracking, and Classification from Large-Scale News Archives for Analysis of Key Political Figures
Abstract Analyzing the appearances of political figures in large-scale news archives is increasingly important with the growing availability of large-scale news archives and developments in computer vision. We present a deep learning-based method combining face detection, tracking, and classification, which is particularly unique because it does not require any re-training when targeting new individuals. Users can feed only a few images of target individuals to reliably detect, track, and classify them. Extensive validation of prominent political figures in two news archives spanning 10 to 20 years, one containing three U.S. cable news and the other including two major Japanese news programs, consistently shows high performance and flexibility of the proposed method. The codes are made readily available to the public.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Political Analysis
Political Analysis POLITICAL SCIENCE-
CiteScore
8.80
自引率
3.70%
发文量
30
期刊介绍: Political Analysis chronicles these exciting developments by publishing the most sophisticated scholarship in the field. It is the place to learn new methods, to find some of the best empirical scholarship, and to publish your best research.
期刊最新文献
Assessing Performance of Martins's and Sampson's Formulae for Calculation of LDL-C in Indian Population: A Single Center Retrospective Study. On Finetuning Large Language Models Explaining Recruitment to Extremism: A Bayesian Hierarchical Case–Control Approach Implementation Matters: Evaluating the Proportional Hazard Test’s Performance Face Detection, Tracking, and Classification from Large-Scale News Archives for Analysis of Key Political Figures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1