{"title":"基于模糊边界的深度神经网络图像分割损失函数","authors":"Yuma Hakumura, Taiyo Ito, Shiori Matsui, Yuya Akiba, Kimiya Aoki, Yuki Nakashima, Kiyoshi Hirao, Manabu Fukushima","doi":"10.1002/ecj.12429","DOIUrl":null,"url":null,"abstract":"<p>This study deals with the task of segmentation of SEM images of fine ceramics sintered bodies by using deep neural network (DNN). In particular, we focus on misclassification caused by the blurriness of grain boundaries(boundaries between particles). Therefore, we utilize the frequency distribution of brightness gradient of grain boundaries and give higher weights to pixels with lower gradient values. Experiments confirmed that the model trained with proposed loss function gave the best prediction results.</p>","PeriodicalId":50539,"journal":{"name":"Electronics and Communications in Japan","volume":"106 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Loss function for ambiguous boundaries for deep neural network (DNN) for image segmentation\",\"authors\":\"Yuma Hakumura, Taiyo Ito, Shiori Matsui, Yuya Akiba, Kimiya Aoki, Yuki Nakashima, Kiyoshi Hirao, Manabu Fukushima\",\"doi\":\"10.1002/ecj.12429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study deals with the task of segmentation of SEM images of fine ceramics sintered bodies by using deep neural network (DNN). In particular, we focus on misclassification caused by the blurriness of grain boundaries(boundaries between particles). Therefore, we utilize the frequency distribution of brightness gradient of grain boundaries and give higher weights to pixels with lower gradient values. Experiments confirmed that the model trained with proposed loss function gave the best prediction results.</p>\",\"PeriodicalId\":50539,\"journal\":{\"name\":\"Electronics and Communications in Japan\",\"volume\":\"106 4\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics and Communications in Japan\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecj.12429\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecj.12429","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Loss function for ambiguous boundaries for deep neural network (DNN) for image segmentation
This study deals with the task of segmentation of SEM images of fine ceramics sintered bodies by using deep neural network (DNN). In particular, we focus on misclassification caused by the blurriness of grain boundaries(boundaries between particles). Therefore, we utilize the frequency distribution of brightness gradient of grain boundaries and give higher weights to pixels with lower gradient values. Experiments confirmed that the model trained with proposed loss function gave the best prediction results.
期刊介绍:
Electronics and Communications in Japan (ECJ) publishes papers translated from the Transactions of the Institute of Electrical Engineers of Japan 12 times per year as an official journal of the Institute of Electrical Engineers of Japan (IEEJ). ECJ aims to provide world-class researches in highly diverse and sophisticated areas of Electrical and Electronic Engineering as well as in related disciplines with emphasis on electronic circuits, controls and communications. ECJ focuses on the following fields:
- Electronic theory and circuits,
- Control theory,
- Communications,
- Cryptography,
- Biomedical fields,
- Surveillance,
- Robotics,
- Sensors and actuators,
- Micromachines,
- Image analysis and signal analysis,
- New materials.
For works related to the science, technology, and applications of electric power, please refer to the sister journal Electrical Engineering in Japan (EEJ).