{"title":"修订区域最大洪水(RMF)方法及分区","authors":"J A du Plessis, S Masule","doi":"10.17159/2309-8775/2023/v65n3a1","DOIUrl":null,"url":null,"abstract":"South Africa receives an average annual rainfall of about 450 mm. Hydraulic structures are typically constructed to either store or manage the excess water resulting from runoff. These hydraulic structures are designed and evaluated to withstand a particular flood peak that can occur in its catchment area. Adequate flow or rainfall records may often not be available to enable a reliable flood estimation. In South Africa an empirical estimation method (the Regional Maximum Flood (RMF)) that utilises regional envelope curves to estimate the maximum observed flood peaks that can be expected in a region, is available. The RMF method adopted by Kovács in 1980, and revised in 1988, is robust and simple to use. The current research revisits the method as applicable to South Africa, and presents an update of the method, taking more than 30 years of additional data and a revised regionalisation approach into consideration. Numerous previous researchers evaluated the RMF method and concluded that the method needs to be updated. It was identified that recently observed flood peaks exceeded the existing RMF envelopes. It was further identified that the Kovács regionalisation process is inconsistent, and a revised regionalisation approach was proposed. The revised regionalisation resulted in 15 RMF K regions and their associated envelope curves. The new RMF K regions are smaller, with the highest K value equal to 5.8 and the lowest value 2.8. The recommended envelope curves were drawn 15% above the maximum observed flood peaks for each region, allowing for possible future climate impacts. The revised RMF envelope curves are considered to adequately represent the RMFs in South Africa and are therefore applicable for determining the expected maximum regional flood at any site in South Africa.","PeriodicalId":54762,"journal":{"name":"Journal of the South African Institution of Civil Engineering","volume":"36 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revised Regional Maximum Flood (RMF) method and regionalisation\",\"authors\":\"J A du Plessis, S Masule\",\"doi\":\"10.17159/2309-8775/2023/v65n3a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"South Africa receives an average annual rainfall of about 450 mm. Hydraulic structures are typically constructed to either store or manage the excess water resulting from runoff. These hydraulic structures are designed and evaluated to withstand a particular flood peak that can occur in its catchment area. Adequate flow or rainfall records may often not be available to enable a reliable flood estimation. In South Africa an empirical estimation method (the Regional Maximum Flood (RMF)) that utilises regional envelope curves to estimate the maximum observed flood peaks that can be expected in a region, is available. The RMF method adopted by Kovács in 1980, and revised in 1988, is robust and simple to use. The current research revisits the method as applicable to South Africa, and presents an update of the method, taking more than 30 years of additional data and a revised regionalisation approach into consideration. Numerous previous researchers evaluated the RMF method and concluded that the method needs to be updated. It was identified that recently observed flood peaks exceeded the existing RMF envelopes. It was further identified that the Kovács regionalisation process is inconsistent, and a revised regionalisation approach was proposed. The revised regionalisation resulted in 15 RMF K regions and their associated envelope curves. The new RMF K regions are smaller, with the highest K value equal to 5.8 and the lowest value 2.8. The recommended envelope curves were drawn 15% above the maximum observed flood peaks for each region, allowing for possible future climate impacts. The revised RMF envelope curves are considered to adequately represent the RMFs in South Africa and are therefore applicable for determining the expected maximum regional flood at any site in South Africa.\",\"PeriodicalId\":54762,\"journal\":{\"name\":\"Journal of the South African Institution of Civil Engineering\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the South African Institution of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17159/2309-8775/2023/v65n3a1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the South African Institution of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17159/2309-8775/2023/v65n3a1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Revised Regional Maximum Flood (RMF) method and regionalisation
South Africa receives an average annual rainfall of about 450 mm. Hydraulic structures are typically constructed to either store or manage the excess water resulting from runoff. These hydraulic structures are designed and evaluated to withstand a particular flood peak that can occur in its catchment area. Adequate flow or rainfall records may often not be available to enable a reliable flood estimation. In South Africa an empirical estimation method (the Regional Maximum Flood (RMF)) that utilises regional envelope curves to estimate the maximum observed flood peaks that can be expected in a region, is available. The RMF method adopted by Kovács in 1980, and revised in 1988, is robust and simple to use. The current research revisits the method as applicable to South Africa, and presents an update of the method, taking more than 30 years of additional data and a revised regionalisation approach into consideration. Numerous previous researchers evaluated the RMF method and concluded that the method needs to be updated. It was identified that recently observed flood peaks exceeded the existing RMF envelopes. It was further identified that the Kovács regionalisation process is inconsistent, and a revised regionalisation approach was proposed. The revised regionalisation resulted in 15 RMF K regions and their associated envelope curves. The new RMF K regions are smaller, with the highest K value equal to 5.8 and the lowest value 2.8. The recommended envelope curves were drawn 15% above the maximum observed flood peaks for each region, allowing for possible future climate impacts. The revised RMF envelope curves are considered to adequately represent the RMFs in South Africa and are therefore applicable for determining the expected maximum regional flood at any site in South Africa.
期刊介绍:
The Journal of the South African Institution of Civil Engineering publishes peer reviewed papers on all aspects of Civil Engineering relevant to Africa. It is an open access, ISI accredited journal, providing authoritative information not only on current developments, but also – through its back issues – giving access to data on established practices and the construction of existing infrastructure. It is published quarterly and is controlled by a Journal Editorial Panel.
The forerunner of the South African Institution of Civil Engineering was established in 1903 as a learned society aiming to develop technology and to share knowledge for the development of the day. The minutes of the proceedings of the then Cape Society of Civil Engineers mainly contained technical papers presented at the Society''s meetings. Since then, and throughout its long history, during which time it has undergone several name changes, the organisation has continued to publish technical papers in its monthly publication (magazine), until 1993 when it created a separate journal for the publication of technical papers.