Nelson Ricardo Coelho Flores Zuniga, Deyan Draganov, Ranajit Ghose
{"title":"用光谱重组方法对地震反射进行相移校正","authors":"Nelson Ricardo Coelho Flores Zuniga, Deyan Draganov, Ranajit Ghose","doi":"10.1002/nsg.12271","DOIUrl":null,"url":null,"abstract":"Abstract Using post‐critical reflection data, it is possible to obtain useful information that allows more reliable geological characterization of the subsurface. However, the strong distortion caused by the phase shift in post‐critical wavelets makes the use of post‐critical reflections rather challenging. For this reason, an approach which is capable of estimating the phase shift of each wavelet of a reflection event in a data‐driven manner is desirable. In this vein, in case the frequency spectrum of a wavelet can be correctly estimated, it is possible to estimate the instantaneous phase shift. In this work, we propose an approach which can perform such estimation based on spectral recomposition of seismic data. We design an inversion approach in order to reconstruct the seismic spectrum of the wavelets of a reflection event, which subsequently allows us to estimate the instantaneous phase of each wavelet of the near‐surface reflection events without performing prior velocity analysis and/or critical‐angle estimation. After finding the instantaneous phase for each wavelet of a reflection event, we show next how one can find the respective phase shifts that can then be corrected.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase‐shift correction of seismic reflections by means of spectral recomposition\",\"authors\":\"Nelson Ricardo Coelho Flores Zuniga, Deyan Draganov, Ranajit Ghose\",\"doi\":\"10.1002/nsg.12271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Using post‐critical reflection data, it is possible to obtain useful information that allows more reliable geological characterization of the subsurface. However, the strong distortion caused by the phase shift in post‐critical wavelets makes the use of post‐critical reflections rather challenging. For this reason, an approach which is capable of estimating the phase shift of each wavelet of a reflection event in a data‐driven manner is desirable. In this vein, in case the frequency spectrum of a wavelet can be correctly estimated, it is possible to estimate the instantaneous phase shift. In this work, we propose an approach which can perform such estimation based on spectral recomposition of seismic data. We design an inversion approach in order to reconstruct the seismic spectrum of the wavelets of a reflection event, which subsequently allows us to estimate the instantaneous phase of each wavelet of the near‐surface reflection events without performing prior velocity analysis and/or critical‐angle estimation. After finding the instantaneous phase for each wavelet of a reflection event, we show next how one can find the respective phase shifts that can then be corrected.\",\"PeriodicalId\":49771,\"journal\":{\"name\":\"Near Surface Geophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Near Surface Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/nsg.12271\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Near Surface Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/nsg.12271","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Phase‐shift correction of seismic reflections by means of spectral recomposition
Abstract Using post‐critical reflection data, it is possible to obtain useful information that allows more reliable geological characterization of the subsurface. However, the strong distortion caused by the phase shift in post‐critical wavelets makes the use of post‐critical reflections rather challenging. For this reason, an approach which is capable of estimating the phase shift of each wavelet of a reflection event in a data‐driven manner is desirable. In this vein, in case the frequency spectrum of a wavelet can be correctly estimated, it is possible to estimate the instantaneous phase shift. In this work, we propose an approach which can perform such estimation based on spectral recomposition of seismic data. We design an inversion approach in order to reconstruct the seismic spectrum of the wavelets of a reflection event, which subsequently allows us to estimate the instantaneous phase of each wavelet of the near‐surface reflection events without performing prior velocity analysis and/or critical‐angle estimation. After finding the instantaneous phase for each wavelet of a reflection event, we show next how one can find the respective phase shifts that can then be corrected.
期刊介绍:
Near Surface Geophysics is an international journal for the publication of research and development in geophysics applied to near surface. It places emphasis on geological, hydrogeological, geotechnical, environmental, engineering, mining, archaeological, agricultural and other applications of geophysics as well as physical soil and rock properties. Geophysical and geoscientific case histories with innovative use of geophysical techniques are welcome, which may include improvements on instrumentation, measurements, data acquisition and processing, modelling, inversion, interpretation, project management and multidisciplinary use. The papers should also be understandable to those who use geophysical data but are not necessarily geophysicists.