Sophie Marie Stephan, Niklas Allroggen, Jens Tronicke
{"title":"为合成探地雷达数据添加真实的噪声模型","authors":"Sophie Marie Stephan, Niklas Allroggen, Jens Tronicke","doi":"10.1002/nsg.12273","DOIUrl":null,"url":null,"abstract":"ABSTRACT Cost‐effective computing capabilities have paved the road for the use of numerical modelling to develop advanced methods and applications of ground‐penetrating radar (GPR). Realistic synthetic data and the corresponding modelling techniques, respectively, should consider all subsurface and above‐ground aspects that influence GPR wave propagation and the characteristics of recorded signals. Critical aspects that can be realized in modern GPR modelling tools include heterogeneous and frequency‐dependent material properties, complex structures and interface geometries as well as three‐dimensional antenna models, including the interaction between the antenna and the subsurface. However, realistic noise related to the electronic components of a GPR system or ambient electromagnetic noise is often not considered, or simplified by assuming a white Gaussian noise model which is added to the modelled data. We present an approach to include realistic noise scenarios as typically observed in GPR field data into the flow of modelling synthetic GPR data. In our approach, we extract the noise from recorded GPR traces and add it to the modelled GPR data via a convolution‐based process. We illustrate our methodology using a modelling exercise, where we contaminate a synthetic two‐dimensional GPR dataset with frequency‐dependent noise recorded in an urban environment. Comparing our noise‐contaminated synthetic data with field data recorded in a similar environment illustrates that our method allows the generation of synthetic GPR with realistic noise characteristics and further highlights the limitations of assuming pure white Gaussian noise models.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adding realistic noise models to synthetic ground‐penetrating radar data\",\"authors\":\"Sophie Marie Stephan, Niklas Allroggen, Jens Tronicke\",\"doi\":\"10.1002/nsg.12273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Cost‐effective computing capabilities have paved the road for the use of numerical modelling to develop advanced methods and applications of ground‐penetrating radar (GPR). Realistic synthetic data and the corresponding modelling techniques, respectively, should consider all subsurface and above‐ground aspects that influence GPR wave propagation and the characteristics of recorded signals. Critical aspects that can be realized in modern GPR modelling tools include heterogeneous and frequency‐dependent material properties, complex structures and interface geometries as well as three‐dimensional antenna models, including the interaction between the antenna and the subsurface. However, realistic noise related to the electronic components of a GPR system or ambient electromagnetic noise is often not considered, or simplified by assuming a white Gaussian noise model which is added to the modelled data. We present an approach to include realistic noise scenarios as typically observed in GPR field data into the flow of modelling synthetic GPR data. In our approach, we extract the noise from recorded GPR traces and add it to the modelled GPR data via a convolution‐based process. We illustrate our methodology using a modelling exercise, where we contaminate a synthetic two‐dimensional GPR dataset with frequency‐dependent noise recorded in an urban environment. Comparing our noise‐contaminated synthetic data with field data recorded in a similar environment illustrates that our method allows the generation of synthetic GPR with realistic noise characteristics and further highlights the limitations of assuming pure white Gaussian noise models.\",\"PeriodicalId\":49771,\"journal\":{\"name\":\"Near Surface Geophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Near Surface Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/nsg.12273\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Near Surface Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/nsg.12273","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Adding realistic noise models to synthetic ground‐penetrating radar data
ABSTRACT Cost‐effective computing capabilities have paved the road for the use of numerical modelling to develop advanced methods and applications of ground‐penetrating radar (GPR). Realistic synthetic data and the corresponding modelling techniques, respectively, should consider all subsurface and above‐ground aspects that influence GPR wave propagation and the characteristics of recorded signals. Critical aspects that can be realized in modern GPR modelling tools include heterogeneous and frequency‐dependent material properties, complex structures and interface geometries as well as three‐dimensional antenna models, including the interaction between the antenna and the subsurface. However, realistic noise related to the electronic components of a GPR system or ambient electromagnetic noise is often not considered, or simplified by assuming a white Gaussian noise model which is added to the modelled data. We present an approach to include realistic noise scenarios as typically observed in GPR field data into the flow of modelling synthetic GPR data. In our approach, we extract the noise from recorded GPR traces and add it to the modelled GPR data via a convolution‐based process. We illustrate our methodology using a modelling exercise, where we contaminate a synthetic two‐dimensional GPR dataset with frequency‐dependent noise recorded in an urban environment. Comparing our noise‐contaminated synthetic data with field data recorded in a similar environment illustrates that our method allows the generation of synthetic GPR with realistic noise characteristics and further highlights the limitations of assuming pure white Gaussian noise models.
期刊介绍:
Near Surface Geophysics is an international journal for the publication of research and development in geophysics applied to near surface. It places emphasis on geological, hydrogeological, geotechnical, environmental, engineering, mining, archaeological, agricultural and other applications of geophysics as well as physical soil and rock properties. Geophysical and geoscientific case histories with innovative use of geophysical techniques are welcome, which may include improvements on instrumentation, measurements, data acquisition and processing, modelling, inversion, interpretation, project management and multidisciplinary use. The papers should also be understandable to those who use geophysical data but are not necessarily geophysicists.