阻燃剂对再生纺织品防火性能的影响

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Journal of Industrial Textiles Pub Date : 2023-01-01 DOI:10.1177/15280837231202526
Anna Danihelová, Miroslav Němec, Tomáš Gergeľ, Miloš Gejdoš, Martin Lieskovský, Iveta Mitterová, Patrik Sčensný, Rastislav Igaz
{"title":"阻燃剂对再生纺织品防火性能的影响","authors":"Anna Danihelová, Miroslav Němec, Tomáš Gergeľ, Miloš Gejdoš, Martin Lieskovský, Iveta Mitterová, Patrik Sčensný, Rastislav Igaz","doi":"10.1177/15280837231202526","DOIUrl":null,"url":null,"abstract":"The paper deals with the fire technical characteristics of insulation panels made of recycled technical textiles from the automotive industry. The introductory part focuse an of the use of recycled textiles, a description and division of technical textiles, a description of the examined material and its composition, combustion processes, and the method of handling waste textiles. The monitored characteristics were the determination of the ignitability of the material, the gross calorific value as well as the radiant heat resistance. The measurements were carried out on samples from recycled technical textiles before and after their treatment with flame retardants (Isonem Anti-fire Solution, Ecogard B45, HR Prof, woven carbon foil, non-woven carbon foil). The best results in the ignitability test after treatment with liquid flame retardants were obtained after treatment with Ecogard B45. The results show that when flame retardants are used, the released heat during the combustion of the monitored materials treated through the dipping method is significantly lower from 13.7 MJ/kg to 23.7 MJ/kg. The lowest gross calorific values were achieved when using liquid flame retardant HR Prof when applied by dipping. The proportion of material that did not burn was very low (4.61 to 5.63%). After exposure to radiant heat for 10 min, the highest mass loss was 13.6% (dipping in Ecogard B45) and the smallest 1.8% (non-woven carbon foil). Based on results, it shows that flame retardant ECOGARD® B45 for the insulation material Senizol AT XX2 TL60 made from recycled technical textiles is the most suitable fire protection.","PeriodicalId":16097,"journal":{"name":"Journal of Industrial Textiles","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of flame retardants on the fire technical characteristics of recycled textiles\",\"authors\":\"Anna Danihelová, Miroslav Němec, Tomáš Gergeľ, Miloš Gejdoš, Martin Lieskovský, Iveta Mitterová, Patrik Sčensný, Rastislav Igaz\",\"doi\":\"10.1177/15280837231202526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with the fire technical characteristics of insulation panels made of recycled technical textiles from the automotive industry. The introductory part focuse an of the use of recycled textiles, a description and division of technical textiles, a description of the examined material and its composition, combustion processes, and the method of handling waste textiles. The monitored characteristics were the determination of the ignitability of the material, the gross calorific value as well as the radiant heat resistance. The measurements were carried out on samples from recycled technical textiles before and after their treatment with flame retardants (Isonem Anti-fire Solution, Ecogard B45, HR Prof, woven carbon foil, non-woven carbon foil). The best results in the ignitability test after treatment with liquid flame retardants were obtained after treatment with Ecogard B45. The results show that when flame retardants are used, the released heat during the combustion of the monitored materials treated through the dipping method is significantly lower from 13.7 MJ/kg to 23.7 MJ/kg. The lowest gross calorific values were achieved when using liquid flame retardant HR Prof when applied by dipping. The proportion of material that did not burn was very low (4.61 to 5.63%). After exposure to radiant heat for 10 min, the highest mass loss was 13.6% (dipping in Ecogard B45) and the smallest 1.8% (non-woven carbon foil). Based on results, it shows that flame retardant ECOGARD® B45 for the insulation material Senizol AT XX2 TL60 made from recycled technical textiles is the most suitable fire protection.\",\"PeriodicalId\":16097,\"journal\":{\"name\":\"Journal of Industrial Textiles\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Textiles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/15280837231202526\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Textiles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15280837231202526","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了汽车工业用再生产业用纺织品保温板的防火技术特性。导论部分侧重于回收纺织品的使用,技术纺织品的描述和划分,所检查材料及其成分的描述,燃烧过程,以及处理废纺织品的方法。监测的特性是材料的可燃性、总热值和辐射耐热性的测定。在用阻燃剂(Isonem防火溶液,Ecogard B45, HR Prof,编织碳箔,非织造碳箔)处理之前和之后,对回收技术纺织品的样品进行了测量。液体阻燃剂处理后的可燃性试验以Ecogard B45处理效果最好。结果表明:当使用阻燃剂时,浸渍法处理的监测材料在燃烧过程中释放的热量从13.7 MJ/kg显著降低到23.7 MJ/kg。当使用液体阻燃剂HR - Prof时,用浸渍法获得了最低的总热值。未燃烧材料的比例很低(4.61% ~ 5.63%)。辐照10 min后,质量损失最大的为13.6%(浸在Ecogard B45中),最小的为1.8%(无纺布碳箔)。实验结果表明,用ECOGARD®B45阻燃剂对回收工业纺织品制成的绝缘材料Senizol AT XX2 TL60的防火性能最合适。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effect of flame retardants on the fire technical characteristics of recycled textiles
The paper deals with the fire technical characteristics of insulation panels made of recycled technical textiles from the automotive industry. The introductory part focuse an of the use of recycled textiles, a description and division of technical textiles, a description of the examined material and its composition, combustion processes, and the method of handling waste textiles. The monitored characteristics were the determination of the ignitability of the material, the gross calorific value as well as the radiant heat resistance. The measurements were carried out on samples from recycled technical textiles before and after their treatment with flame retardants (Isonem Anti-fire Solution, Ecogard B45, HR Prof, woven carbon foil, non-woven carbon foil). The best results in the ignitability test after treatment with liquid flame retardants were obtained after treatment with Ecogard B45. The results show that when flame retardants are used, the released heat during the combustion of the monitored materials treated through the dipping method is significantly lower from 13.7 MJ/kg to 23.7 MJ/kg. The lowest gross calorific values were achieved when using liquid flame retardant HR Prof when applied by dipping. The proportion of material that did not burn was very low (4.61 to 5.63%). After exposure to radiant heat for 10 min, the highest mass loss was 13.6% (dipping in Ecogard B45) and the smallest 1.8% (non-woven carbon foil). Based on results, it shows that flame retardant ECOGARD® B45 for the insulation material Senizol AT XX2 TL60 made from recycled technical textiles is the most suitable fire protection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Industrial Textiles
Journal of Industrial Textiles MATERIALS SCIENCE, TEXTILES-
CiteScore
5.30
自引率
18.80%
发文量
165
审稿时长
2.3 months
期刊介绍: The Journal of Industrial Textiles is the only peer reviewed journal devoted exclusively to technology, processing, methodology, modelling and applications in technical textiles, nonwovens, coated and laminated fabrics, textile composites and nanofibers.
期刊最新文献
Influence of honeycomb structures on fluids transmission and heat retention properties; An initiative towards stretchable weaves Experimental study on protective performance of ACF sandwich composites with different configurations in high-velocity impact Comprehensive study of the off-axis mechanical behaviors of a Polytetrafluoroethylene‐ coated fabric after 23 Years of service at Shanghai stadium Transformation of zinc acetate into ZnO nanofibers for enhanced NOx gas sensing: Cost-effective strategies and additive-free optimization Multifunctional sandwich materials with ROTIS structure for improved thermal and electrical properties in construction application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1