{"title":"基于直接测量法和化学热力学模型的气溶胶酸度比较","authors":"Qinping Song, Kazuo Osada","doi":"10.4209/aaqr.230096","DOIUrl":null,"url":null,"abstract":"Aerosol acidity is an important parameter in aerosol science that affects many chemical reactions in the atmosphere, and it is often estimated using chemical thermodynamic models. The Extended Aerosol Inorganic Model IV (E-AIM IV) is frequently used for this purpose; however, due to the limited number of available direct measurement methods of aerosol acidity, there is still a certain degree of uncertainty with regard to how accurately the simulation results reflect reality. In this study, a new pH testing paper method for the direct measurement of aerosol pH is used to measure the pH (pHmeas) of aerosol particle samples. Based on the data of the ionic constituents of the samples, the E-AIM IV model is then used to estimate aerosol pH (pHest). This study provides a comparison of pHmeas and pHest, revealing that the relationship is satisfactorily approximated by a simple linear regression of pHest = 1.05pHmeas + 0.38 (R2 = 0.90). The strong correlation and slope very close to unity indicate that the pH testing paper method corroborates the outputs of the E-AIM IV model.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"31 1","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Aerosol Acidity Based on a Direct Measurement Method and a Chemical Thermodynamic Model\",\"authors\":\"Qinping Song, Kazuo Osada\",\"doi\":\"10.4209/aaqr.230096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aerosol acidity is an important parameter in aerosol science that affects many chemical reactions in the atmosphere, and it is often estimated using chemical thermodynamic models. The Extended Aerosol Inorganic Model IV (E-AIM IV) is frequently used for this purpose; however, due to the limited number of available direct measurement methods of aerosol acidity, there is still a certain degree of uncertainty with regard to how accurately the simulation results reflect reality. In this study, a new pH testing paper method for the direct measurement of aerosol pH is used to measure the pH (pHmeas) of aerosol particle samples. Based on the data of the ionic constituents of the samples, the E-AIM IV model is then used to estimate aerosol pH (pHest). This study provides a comparison of pHmeas and pHest, revealing that the relationship is satisfactorily approximated by a simple linear regression of pHest = 1.05pHmeas + 0.38 (R2 = 0.90). The strong correlation and slope very close to unity indicate that the pH testing paper method corroborates the outputs of the E-AIM IV model.\",\"PeriodicalId\":7402,\"journal\":{\"name\":\"Aerosol and Air Quality Research\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerosol and Air Quality Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4209/aaqr.230096\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol and Air Quality Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4209/aaqr.230096","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Comparison of Aerosol Acidity Based on a Direct Measurement Method and a Chemical Thermodynamic Model
Aerosol acidity is an important parameter in aerosol science that affects many chemical reactions in the atmosphere, and it is often estimated using chemical thermodynamic models. The Extended Aerosol Inorganic Model IV (E-AIM IV) is frequently used for this purpose; however, due to the limited number of available direct measurement methods of aerosol acidity, there is still a certain degree of uncertainty with regard to how accurately the simulation results reflect reality. In this study, a new pH testing paper method for the direct measurement of aerosol pH is used to measure the pH (pHmeas) of aerosol particle samples. Based on the data of the ionic constituents of the samples, the E-AIM IV model is then used to estimate aerosol pH (pHest). This study provides a comparison of pHmeas and pHest, revealing that the relationship is satisfactorily approximated by a simple linear regression of pHest = 1.05pHmeas + 0.38 (R2 = 0.90). The strong correlation and slope very close to unity indicate that the pH testing paper method corroborates the outputs of the E-AIM IV model.
期刊介绍:
The international journal of Aerosol and Air Quality Research (AAQR) covers all aspects of aerosol science and technology, atmospheric science and air quality related issues. It encompasses a multi-disciplinary field, including:
- Aerosol, air quality, atmospheric chemistry and global change;
- Air toxics (hazardous air pollutants (HAPs), persistent organic pollutants (POPs)) - Sources, control, transport and fate, human exposure;
- Nanoparticle and nanotechnology;
- Sources, combustion, thermal decomposition, emission, properties, behavior, formation, transport, deposition, measurement and analysis;
- Effects on the environments;
- Air quality and human health;
- Bioaerosols;
- Indoor air quality;
- Energy and air pollution;
- Pollution control technologies;
- Invention and improvement of sampling instruments and technologies;
- Optical/radiative properties and remote sensing;
- Carbon dioxide emission, capture, storage and utilization; novel methods for the reduction of carbon dioxide emission;
- Other topics related to aerosol and air quality.