{"title":"木质素磺酸-聚丙烯酸钠水凝胶的合成、表征及应用","authors":"","doi":"10.56042/ijct.v30i6.1325","DOIUrl":null,"url":null,"abstract":"Natural polymer-based hydrogels are of great interest to research community owing to their inherent characters of environment friendliness and biodegradability. Current work aims to synthesize lignosulfonate grafted sodium acrylate hydrogel (LS-g-SAH) and investigate its application in urea release behaviour. The hydrogel has been characterized by different techniques. The release kinetics has been analyzed by using a UV-visible spectrophotometer. The optimized composition of lignosulfonate, KPS, and N,N’-MBA has shown the highest water absorbency of 560 g g-1 in distilled water. The equilibrium swollen LS-g-SAH 12 hydrogel has slowly released 60% of loaded urea in 24 h and followed first-order release kinetics. Soil treatment with hydrogel has shown a significant effect in reducing the water evaporation rate. It also improved the seed germination and average height of wheatgrass. The synthesized LS-g-SAH is, thus, expected to have potential application in modern sustainable agriculture.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, characterization and application of Lignosulphonate-g- poly(sodium acrylate) hydrogel\",\"authors\":\"\",\"doi\":\"10.56042/ijct.v30i6.1325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural polymer-based hydrogels are of great interest to research community owing to their inherent characters of environment friendliness and biodegradability. Current work aims to synthesize lignosulfonate grafted sodium acrylate hydrogel (LS-g-SAH) and investigate its application in urea release behaviour. The hydrogel has been characterized by different techniques. The release kinetics has been analyzed by using a UV-visible spectrophotometer. The optimized composition of lignosulfonate, KPS, and N,N’-MBA has shown the highest water absorbency of 560 g g-1 in distilled water. The equilibrium swollen LS-g-SAH 12 hydrogel has slowly released 60% of loaded urea in 24 h and followed first-order release kinetics. Soil treatment with hydrogel has shown a significant effect in reducing the water evaporation rate. It also improved the seed germination and average height of wheatgrass. The synthesized LS-g-SAH is, thus, expected to have potential application in modern sustainable agriculture.\",\"PeriodicalId\":13388,\"journal\":{\"name\":\"Indian Journal of Chemical Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Chemical Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56042/ijct.v30i6.1325\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Chemical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56042/ijct.v30i6.1325","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
天然聚合物基水凝胶因其固有的环境友好性和生物可降解性而受到研究界的广泛关注。本文旨在合成木质素磺酸接枝丙烯酸钠水凝胶(LS-g-SAH)并研究其在尿素释放中的应用。用不同的技术对水凝胶进行了表征。用紫外可见分光光度计对其释放动力学进行了分析。优化后的木质素磺酸盐、KPS和N,N ' -MBA在蒸馏水中的吸水性最高,为560 g g-1。平衡膨胀的LS-g-SAH 12水凝胶在24 h内缓慢释放60%的负载尿素,并遵循一级释放动力学。水凝胶处理在降低水分蒸发速率方面有显著效果。对小麦草的种子发芽率和平均株高也有促进作用。因此,合成的LS-g-SAH在现代可持续农业中具有潜在的应用前景。
Synthesis, characterization and application of Lignosulphonate-g- poly(sodium acrylate) hydrogel
Natural polymer-based hydrogels are of great interest to research community owing to their inherent characters of environment friendliness and biodegradability. Current work aims to synthesize lignosulfonate grafted sodium acrylate hydrogel (LS-g-SAH) and investigate its application in urea release behaviour. The hydrogel has been characterized by different techniques. The release kinetics has been analyzed by using a UV-visible spectrophotometer. The optimized composition of lignosulfonate, KPS, and N,N’-MBA has shown the highest water absorbency of 560 g g-1 in distilled water. The equilibrium swollen LS-g-SAH 12 hydrogel has slowly released 60% of loaded urea in 24 h and followed first-order release kinetics. Soil treatment with hydrogel has shown a significant effect in reducing the water evaporation rate. It also improved the seed germination and average height of wheatgrass. The synthesized LS-g-SAH is, thus, expected to have potential application in modern sustainable agriculture.
期刊介绍:
Indian Journal of Chemical Technology has established itself as the leading journal in the exciting field of chemical engineering and technology. It is intended for rapid communication of knowledge and experience to engineers and scientists working in the area of research development or practical application of chemical technology. This bimonthly journal includes novel and original research findings as well as reviews in the areas related to – Chemical Engineering, Catalysis, Leather Processing, Polymerization, Membrane Separation, Pharmaceuticals and Drugs, Agrochemicals, Reaction Engineering, Biochemical Engineering, Petroleum Technology, Corrosion & Metallurgy and Applied Chemistry.