{"title":"调谐 N-甲基-6-氧喹啉鎓离子液体染料的光物理和光酸性:通过 TD-D3-DFT 方法研究溶剂和取代效应的作用†。","authors":"Somayeh Hosseini and Hossein Roohi","doi":"10.1039/D3ME00136A","DOIUrl":null,"url":null,"abstract":"<p >\r\n <em>N</em>-Methyl-6-hydroxyquinolinium-based IL dyes are a promising class of dyes with a wide range of potential applications. In this work, the photophysical and photo acidic properties of <em>N</em>-methyl-6-oxyquinolonium-based ionic liquid dyes <strong>[6MQc][Y1–6]</strong> (Y1–6 = CH<small><sub>3</sub></small>CO<small><sub>2</sub></small><small><sup>−</sup></small>, CF<small><sub>3</sub></small>CO<small><sub>2</sub></small><small><sup>−</sup></small>, NTf<small><sub>2</sub></small><small><sup>−</sup></small>, CF<small><sub>3</sub></small>SO<small><sub>3</sub></small><small><sup>−</sup></small>, BF<small><sub>4</sub></small><small><sup>−</sup></small>, and PF<small><sub>6</sub></small><small><sup>−</sup></small>) were investigated in three solvent media at the TD-PBE0-D3/6-311++G(d,p) level of theory. The impact of solvent and anion on the absorption and emission spectra and the excited-state properties of these dyes were explored. The optimized structures revealed an increase in the O–H⋯X (X = O or F) and a decrease in the C–H⋯X hydrogen bond distances formed between the <strong>[6MQc]</strong><small><sup><strong>+</strong></sup></small> cation and anions due to S<small><sub>0</sub></small> to S<small><sub>1</sub></small> photoexcitation. The pairing of the <strong>[6MQc]</strong><small><sup><strong>+</strong></sup></small> cation with [CH<small><sub>3</sub></small>COO]<small><sup>−</sup></small> and [CF<small><sub>3</sub></small>COO]<small><sup>−</sup></small> anions leads to the formation of strong Brønsted acids, which exhibit the largest absorption wavelength and Stokes shift in the fluorescence emission (116–145 nm and 168–204 nm) and solvatochromic effect. The studied IL dyes have fluorescence emissions in the range of 430 to 565 nm. Our study contributes to the understanding of the unique properties of IL dyes and provides insights into the design and optimization of <em>N</em>-methyl-6-hydroxyquinolinium-based ionic liquid dyes for a range of applications.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 2","pages":" 171-187"},"PeriodicalIF":3.2000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning the photophysical and photo acidic properties of N-methyl-6-oxyquinolonium-based ionic liquid dyes: the role of solvent and substitution effects investigated by a TD-D3-DFT approach†\",\"authors\":\"Somayeh Hosseini and Hossein Roohi\",\"doi\":\"10.1039/D3ME00136A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >\\r\\n <em>N</em>-Methyl-6-hydroxyquinolinium-based IL dyes are a promising class of dyes with a wide range of potential applications. In this work, the photophysical and photo acidic properties of <em>N</em>-methyl-6-oxyquinolonium-based ionic liquid dyes <strong>[6MQc][Y1–6]</strong> (Y1–6 = CH<small><sub>3</sub></small>CO<small><sub>2</sub></small><small><sup>−</sup></small>, CF<small><sub>3</sub></small>CO<small><sub>2</sub></small><small><sup>−</sup></small>, NTf<small><sub>2</sub></small><small><sup>−</sup></small>, CF<small><sub>3</sub></small>SO<small><sub>3</sub></small><small><sup>−</sup></small>, BF<small><sub>4</sub></small><small><sup>−</sup></small>, and PF<small><sub>6</sub></small><small><sup>−</sup></small>) were investigated in three solvent media at the TD-PBE0-D3/6-311++G(d,p) level of theory. The impact of solvent and anion on the absorption and emission spectra and the excited-state properties of these dyes were explored. The optimized structures revealed an increase in the O–H⋯X (X = O or F) and a decrease in the C–H⋯X hydrogen bond distances formed between the <strong>[6MQc]</strong><small><sup><strong>+</strong></sup></small> cation and anions due to S<small><sub>0</sub></small> to S<small><sub>1</sub></small> photoexcitation. The pairing of the <strong>[6MQc]</strong><small><sup><strong>+</strong></sup></small> cation with [CH<small><sub>3</sub></small>COO]<small><sup>−</sup></small> and [CF<small><sub>3</sub></small>COO]<small><sup>−</sup></small> anions leads to the formation of strong Brønsted acids, which exhibit the largest absorption wavelength and Stokes shift in the fluorescence emission (116–145 nm and 168–204 nm) and solvatochromic effect. The studied IL dyes have fluorescence emissions in the range of 430 to 565 nm. Our study contributes to the understanding of the unique properties of IL dyes and provides insights into the design and optimization of <em>N</em>-methyl-6-hydroxyquinolinium-based ionic liquid dyes for a range of applications.</p>\",\"PeriodicalId\":91,\"journal\":{\"name\":\"Molecular Systems Design & Engineering\",\"volume\":\" 2\",\"pages\":\" 171-187\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Design & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/me/d3me00136a\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/me/d3me00136a","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Tuning the photophysical and photo acidic properties of N-methyl-6-oxyquinolonium-based ionic liquid dyes: the role of solvent and substitution effects investigated by a TD-D3-DFT approach†
N-Methyl-6-hydroxyquinolinium-based IL dyes are a promising class of dyes with a wide range of potential applications. In this work, the photophysical and photo acidic properties of N-methyl-6-oxyquinolonium-based ionic liquid dyes [6MQc][Y1–6] (Y1–6 = CH3CO2−, CF3CO2−, NTf2−, CF3SO3−, BF4−, and PF6−) were investigated in three solvent media at the TD-PBE0-D3/6-311++G(d,p) level of theory. The impact of solvent and anion on the absorption and emission spectra and the excited-state properties of these dyes were explored. The optimized structures revealed an increase in the O–H⋯X (X = O or F) and a decrease in the C–H⋯X hydrogen bond distances formed between the [6MQc]+ cation and anions due to S0 to S1 photoexcitation. The pairing of the [6MQc]+ cation with [CH3COO]− and [CF3COO]− anions leads to the formation of strong Brønsted acids, which exhibit the largest absorption wavelength and Stokes shift in the fluorescence emission (116–145 nm and 168–204 nm) and solvatochromic effect. The studied IL dyes have fluorescence emissions in the range of 430 to 565 nm. Our study contributes to the understanding of the unique properties of IL dyes and provides insights into the design and optimization of N-methyl-6-hydroxyquinolinium-based ionic liquid dyes for a range of applications.
期刊介绍:
Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.