{"title":"绿色化学品对池底污泥溶解的协同效应研究","authors":"","doi":"10.56042/ijct.v30i6.4025","DOIUrl":null,"url":null,"abstract":"The present paper discusses the study on dissolution dispersion efficiency of tank bottom sludge (TBS) in the presence of new series of green chemical additives i.e., Ionic Liquids (ILs). This work highlights the synthesis of series of six imidazolium based ILs ([BMIm]Br, [BMIm]BF 4 , [PMIm]Br, [PMIm]BF 4 , [HMIm]Br, and [HMIm]BF 4 ) along with their influence on dissolution of the TBS. Dissolution–dispersion efficiency of the TBS is evaluated by calculating the residue and absorbance data of the standard solutions along with TBS solution in the presence of solvents independently followed by treatment with synthesized ILs by UV spectroscopy. Dissolution of TBS in heptane is found to be 40%, however it increases to 88% when employed along with 800 ppm of [BMIm]BF 4 . Similarly [PMIm]Br shows extreme dissolution efficiency at 800 ppm up to 80% and 82% in the presence of toluene and heptane, respectively. ILs work by softening the TBS which is accumulated at the bottom of the tank. It also helps in diminishing the use of toxic organic solvents. Interaction of IL product with the suitable solvent can directly influence the dissolution efficiency of TBS. ILs have the potential to replace toxic organic solvents used in oil and gas industry.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"128 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of synergetic effect of green chemicals on dissolution of tank bottom sludge\",\"authors\":\"\",\"doi\":\"10.56042/ijct.v30i6.4025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper discusses the study on dissolution dispersion efficiency of tank bottom sludge (TBS) in the presence of new series of green chemical additives i.e., Ionic Liquids (ILs). This work highlights the synthesis of series of six imidazolium based ILs ([BMIm]Br, [BMIm]BF 4 , [PMIm]Br, [PMIm]BF 4 , [HMIm]Br, and [HMIm]BF 4 ) along with their influence on dissolution of the TBS. Dissolution–dispersion efficiency of the TBS is evaluated by calculating the residue and absorbance data of the standard solutions along with TBS solution in the presence of solvents independently followed by treatment with synthesized ILs by UV spectroscopy. Dissolution of TBS in heptane is found to be 40%, however it increases to 88% when employed along with 800 ppm of [BMIm]BF 4 . Similarly [PMIm]Br shows extreme dissolution efficiency at 800 ppm up to 80% and 82% in the presence of toluene and heptane, respectively. ILs work by softening the TBS which is accumulated at the bottom of the tank. It also helps in diminishing the use of toxic organic solvents. Interaction of IL product with the suitable solvent can directly influence the dissolution efficiency of TBS. ILs have the potential to replace toxic organic solvents used in oil and gas industry.\",\"PeriodicalId\":13388,\"journal\":{\"name\":\"Indian Journal of Chemical Technology\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Chemical Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56042/ijct.v30i6.4025\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Chemical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56042/ijct.v30i6.4025","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Study of synergetic effect of green chemicals on dissolution of tank bottom sludge
The present paper discusses the study on dissolution dispersion efficiency of tank bottom sludge (TBS) in the presence of new series of green chemical additives i.e., Ionic Liquids (ILs). This work highlights the synthesis of series of six imidazolium based ILs ([BMIm]Br, [BMIm]BF 4 , [PMIm]Br, [PMIm]BF 4 , [HMIm]Br, and [HMIm]BF 4 ) along with their influence on dissolution of the TBS. Dissolution–dispersion efficiency of the TBS is evaluated by calculating the residue and absorbance data of the standard solutions along with TBS solution in the presence of solvents independently followed by treatment with synthesized ILs by UV spectroscopy. Dissolution of TBS in heptane is found to be 40%, however it increases to 88% when employed along with 800 ppm of [BMIm]BF 4 . Similarly [PMIm]Br shows extreme dissolution efficiency at 800 ppm up to 80% and 82% in the presence of toluene and heptane, respectively. ILs work by softening the TBS which is accumulated at the bottom of the tank. It also helps in diminishing the use of toxic organic solvents. Interaction of IL product with the suitable solvent can directly influence the dissolution efficiency of TBS. ILs have the potential to replace toxic organic solvents used in oil and gas industry.
期刊介绍:
Indian Journal of Chemical Technology has established itself as the leading journal in the exciting field of chemical engineering and technology. It is intended for rapid communication of knowledge and experience to engineers and scientists working in the area of research development or practical application of chemical technology. This bimonthly journal includes novel and original research findings as well as reviews in the areas related to – Chemical Engineering, Catalysis, Leather Processing, Polymerization, Membrane Separation, Pharmaceuticals and Drugs, Agrochemicals, Reaction Engineering, Biochemical Engineering, Petroleum Technology, Corrosion & Metallurgy and Applied Chemistry.