使用嵌入创作和评估原型多场景用例增强现实应用

IF 2.6 3区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Computing and Information Science in Engineering Pub Date : 2023-10-19 DOI:10.1115/1.4063558
Meng-Han Wu, Ananya Ipsita, Gaoping Huang, Karthik Ramani, Alexander J Quinn
{"title":"使用嵌入创作和评估原型多场景用例增强现实应用","authors":"Meng-Han Wu, Ananya Ipsita, Gaoping Huang, Karthik Ramani, Alexander J Quinn","doi":"10.1115/1.4063558","DOIUrl":null,"url":null,"abstract":"Abstract Prototyping use cases for augmented reality (AR) applications can be beneficial to elicit the functional requirements of the features early-on, to drive the subsequent development in a goal-oriented manner. Doing so would require designers to identify the goal-oriented interactions and map the associations between those interactions in a spatio-temporal context. Pertaining to the multiple scenarios that may result from the mapping, and the embodied nature of the interaction components, recent AR prototyping methods lack the support to adequately capture and communicate the intent of designers and stakeholders during this process. We present ImpersonatAR, a mobile-device-based prototyping tool that utilizes embodied demonstrations in the augmented environment to support prototyping and evaluation of multi-scenario AR use cases. The approach uses: (1) capturing events or steps in the form of embodied demonstrations using avatars and 3D animations, (2) organizing events and steps to compose multi-scenario experience, and finally (3) allowing stakeholders to explore the scenarios through interactive role-play with the prototypes. We conducted a user study with ten participants to prototype use cases using ImpersonatAR from two different AR application features. Results validated that ImpersonatAR promotes exploration and evaluation of diverse design possibilities of multi-scenario AR use cases through embodied representations of the different scenarios.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ImpersonatAR: Using Embodied Authoring and Evaluation to Prototype Multi-Scenario Use cases for Augmented Reality Applications\",\"authors\":\"Meng-Han Wu, Ananya Ipsita, Gaoping Huang, Karthik Ramani, Alexander J Quinn\",\"doi\":\"10.1115/1.4063558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Prototyping use cases for augmented reality (AR) applications can be beneficial to elicit the functional requirements of the features early-on, to drive the subsequent development in a goal-oriented manner. Doing so would require designers to identify the goal-oriented interactions and map the associations between those interactions in a spatio-temporal context. Pertaining to the multiple scenarios that may result from the mapping, and the embodied nature of the interaction components, recent AR prototyping methods lack the support to adequately capture and communicate the intent of designers and stakeholders during this process. We present ImpersonatAR, a mobile-device-based prototyping tool that utilizes embodied demonstrations in the augmented environment to support prototyping and evaluation of multi-scenario AR use cases. The approach uses: (1) capturing events or steps in the form of embodied demonstrations using avatars and 3D animations, (2) organizing events and steps to compose multi-scenario experience, and finally (3) allowing stakeholders to explore the scenarios through interactive role-play with the prototypes. We conducted a user study with ten participants to prototype use cases using ImpersonatAR from two different AR application features. Results validated that ImpersonatAR promotes exploration and evaluation of diverse design possibilities of multi-scenario AR use cases through embodied representations of the different scenarios.\",\"PeriodicalId\":54856,\"journal\":{\"name\":\"Journal of Computing and Information Science in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Information Science in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063558\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063558","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

增强现实(AR)应用程序的原型化用例有助于在早期引出特性的功能需求,以面向目标的方式驱动后续开发。要做到这一点,设计师需要识别目标导向的交互,并在时空背景下绘制出这些交互之间的关联。与映射可能导致的多种场景有关,以及交互组件的具体化性质,最近的AR原型方法在此过程中缺乏对充分捕获和传达设计师和利益相关者意图的支持。我们介绍了ImpersonatAR,一个基于移动设备的原型工具,它利用增强环境中的具体化演示来支持多场景AR用例的原型和评估。该方法使用:(1)使用化身和3D动画以体现演示的形式捕获事件或步骤,(2)组织事件和步骤以组成多场景体验,最后(3)允许利益相关者通过与原型的交互式角色扮演来探索场景。我们对10名参与者进行了一项用户研究,使用来自两个不同AR应用程序特性的ImpersonatAR对用例进行原型化。结果证实,ImpersonatAR通过对不同场景的具体表示,促进了对多场景AR用例的各种设计可能性的探索和评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ImpersonatAR: Using Embodied Authoring and Evaluation to Prototype Multi-Scenario Use cases for Augmented Reality Applications
Abstract Prototyping use cases for augmented reality (AR) applications can be beneficial to elicit the functional requirements of the features early-on, to drive the subsequent development in a goal-oriented manner. Doing so would require designers to identify the goal-oriented interactions and map the associations between those interactions in a spatio-temporal context. Pertaining to the multiple scenarios that may result from the mapping, and the embodied nature of the interaction components, recent AR prototyping methods lack the support to adequately capture and communicate the intent of designers and stakeholders during this process. We present ImpersonatAR, a mobile-device-based prototyping tool that utilizes embodied demonstrations in the augmented environment to support prototyping and evaluation of multi-scenario AR use cases. The approach uses: (1) capturing events or steps in the form of embodied demonstrations using avatars and 3D animations, (2) organizing events and steps to compose multi-scenario experience, and finally (3) allowing stakeholders to explore the scenarios through interactive role-play with the prototypes. We conducted a user study with ten participants to prototype use cases using ImpersonatAR from two different AR application features. Results validated that ImpersonatAR promotes exploration and evaluation of diverse design possibilities of multi-scenario AR use cases through embodied representations of the different scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
12.90%
发文量
100
审稿时长
6 months
期刊介绍: The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications. Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping
期刊最新文献
Multi-UAV Assisted Flood Navigation of Waterborne Vehicles using Deep Reinforcement Learning Engineering-guided Deep Feature Learning for Manufacturing Process Monitoring What to consider at the development of educational programs and courses about next-generation cyber-physical systems? JCISE Special Issue: Cybersecurity in Manufacturing Robust Contact Computation in Non-Rigid Variation Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1