Petr Znachor, Jiří Nedoma, Vojtech Kolar, Anna Matoušů
{"title":"超富营养化鱼塘甲烷排放时空变异性与环境条件","authors":"Petr Znachor, Jiří Nedoma, Vojtech Kolar, Anna Matoušů","doi":"10.5194/bg-20-4273-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Estimations of methane (CH4) emissions are often based on point measurements using either flux chambers or a transfer coefficient method, which may lead to strong underestimation of the total CH4 fluxes. In order to demonstrate more precise measurements of the CH4 fluxes from an aquaculture pond, using a higher resolution sampling approach we examined the spatiotemporal variability of CH4 concentrations in the water, related fluxes (diffusive and ebullitive) and relevant environmental conditions (temperature, oxygen, chlorophyll a) during three diurnal campaigns in a hyper-eutrophic fishpond. Our data show remarkable variance spanning several orders of magnitude while diffusive fluxes accounted for only a minor fraction of total CH4 fluxes (4.1 %–18.5 %). Linear mixed-effects models identified water depth as the only significant predictor of CH4 fluxes. Our findings necessitate complex sampling strategies involving temporal and spatial variability for reliable estimates of the role of fishponds in a global methane budget.","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"56 1","pages":"0"},"PeriodicalIF":3.9000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial and temporal variability of methane emissions and environmental conditions in a hyper-eutrophic fishpond\",\"authors\":\"Petr Znachor, Jiří Nedoma, Vojtech Kolar, Anna Matoušů\",\"doi\":\"10.5194/bg-20-4273-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Estimations of methane (CH4) emissions are often based on point measurements using either flux chambers or a transfer coefficient method, which may lead to strong underestimation of the total CH4 fluxes. In order to demonstrate more precise measurements of the CH4 fluxes from an aquaculture pond, using a higher resolution sampling approach we examined the spatiotemporal variability of CH4 concentrations in the water, related fluxes (diffusive and ebullitive) and relevant environmental conditions (temperature, oxygen, chlorophyll a) during three diurnal campaigns in a hyper-eutrophic fishpond. Our data show remarkable variance spanning several orders of magnitude while diffusive fluxes accounted for only a minor fraction of total CH4 fluxes (4.1 %–18.5 %). Linear mixed-effects models identified water depth as the only significant predictor of CH4 fluxes. Our findings necessitate complex sampling strategies involving temporal and spatial variability for reliable estimates of the role of fishponds in a global methane budget.\",\"PeriodicalId\":8899,\"journal\":{\"name\":\"Biogeosciences\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biogeosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/bg-20-4273-2023\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/bg-20-4273-2023","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Spatial and temporal variability of methane emissions and environmental conditions in a hyper-eutrophic fishpond
Abstract. Estimations of methane (CH4) emissions are often based on point measurements using either flux chambers or a transfer coefficient method, which may lead to strong underestimation of the total CH4 fluxes. In order to demonstrate more precise measurements of the CH4 fluxes from an aquaculture pond, using a higher resolution sampling approach we examined the spatiotemporal variability of CH4 concentrations in the water, related fluxes (diffusive and ebullitive) and relevant environmental conditions (temperature, oxygen, chlorophyll a) during three diurnal campaigns in a hyper-eutrophic fishpond. Our data show remarkable variance spanning several orders of magnitude while diffusive fluxes accounted for only a minor fraction of total CH4 fluxes (4.1 %–18.5 %). Linear mixed-effects models identified water depth as the only significant predictor of CH4 fluxes. Our findings necessitate complex sampling strategies involving temporal and spatial variability for reliable estimates of the role of fishponds in a global methane budget.
期刊介绍:
Biogeosciences (BG) is an international scientific journal dedicated to the publication and discussion of research articles, short communications and review papers on all aspects of the interactions between the biological, chemical and physical processes in terrestrial or extraterrestrial life with the geosphere, hydrosphere and atmosphere. The objective of the journal is to cut across the boundaries of established sciences and achieve an interdisciplinary view of these interactions. Experimental, conceptual and modelling approaches are welcome.