Miftahul Fikri, Zulkurnain Abdul-Malek, Mona Riza Mohd Esa, Eko Supriyanto
{"title":"多元正态隐马尔可夫非齐次模型的递归参数估计及其收敛性","authors":"Miftahul Fikri, Zulkurnain Abdul-Malek, Mona Riza Mohd Esa, Eko Supriyanto","doi":"10.11113/mjfas.v19n5.3041","DOIUrl":null,"url":null,"abstract":"In this paper, will discussed parameter estimation and convergence analysis of multivariate normal hidden inhomogeneous Markov models. The results of this research show that by using the expectation maximization algorithm, a sequence of parameter estimators converges to a stationary point of the likelihood function in a monotonically increasing manner.","PeriodicalId":18149,"journal":{"name":"Malaysian Journal of Fundamental and Applied Sciences","volume":"351 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recursive Parameter Estimation and Its Convergence for Multivariate Normal Hidden Markov Inhomogeneous Models\",\"authors\":\"Miftahul Fikri, Zulkurnain Abdul-Malek, Mona Riza Mohd Esa, Eko Supriyanto\",\"doi\":\"10.11113/mjfas.v19n5.3041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, will discussed parameter estimation and convergence analysis of multivariate normal hidden inhomogeneous Markov models. The results of this research show that by using the expectation maximization algorithm, a sequence of parameter estimators converges to a stationary point of the likelihood function in a monotonically increasing manner.\",\"PeriodicalId\":18149,\"journal\":{\"name\":\"Malaysian Journal of Fundamental and Applied Sciences\",\"volume\":\"351 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian Journal of Fundamental and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/mjfas.v19n5.3041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Fundamental and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/mjfas.v19n5.3041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Recursive Parameter Estimation and Its Convergence for Multivariate Normal Hidden Markov Inhomogeneous Models
In this paper, will discussed parameter estimation and convergence analysis of multivariate normal hidden inhomogeneous Markov models. The results of this research show that by using the expectation maximization algorithm, a sequence of parameter estimators converges to a stationary point of the likelihood function in a monotonically increasing manner.