{"title":"具有可伸缩光圈的高性能光学快门设计","authors":"","doi":"10.24425/bpasts.2021.138236","DOIUrl":null,"url":null,"abstract":". In this paper, design, construction and switching parameters of a self-made optical shutter with scalable aperture were reported. The aim of the study was to obtain the shortest possible switching times, minimum shutter open time and comparable with commercial shutter, the switch-on and switch-off times. For this purpose, numerical simulations were performed using Comsol Multiphysics 5.4. The design of the shutter and the control system have been optimized accordingly to the obtained results of numerical simulations. The optimized design was fabricated in a professional mechanical workshop and operational parameters of the constructed device were investigated. The switching parameters of the shutter, such as opening time, closing time, minimum shutter open time and other parameters were measured. The values of the parameters were determined from a statistical analysis of a sample consisting of 10,000 measurement results. The performed characterization showed that the tested device has the opening time of 0.8 ms, while the closing time is approximately 1 ms. The designed device is characterized by the minimum shutter open time of 6.4 ms.","PeriodicalId":55299,"journal":{"name":"Bulletin of the Polish Academy of Sciences-Technical Sciences","volume":"171 2","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High performance optical shutter design with scalable aperture\",\"authors\":\"\",\"doi\":\"10.24425/bpasts.2021.138236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, design, construction and switching parameters of a self-made optical shutter with scalable aperture were reported. The aim of the study was to obtain the shortest possible switching times, minimum shutter open time and comparable with commercial shutter, the switch-on and switch-off times. For this purpose, numerical simulations were performed using Comsol Multiphysics 5.4. The design of the shutter and the control system have been optimized accordingly to the obtained results of numerical simulations. The optimized design was fabricated in a professional mechanical workshop and operational parameters of the constructed device were investigated. The switching parameters of the shutter, such as opening time, closing time, minimum shutter open time and other parameters were measured. The values of the parameters were determined from a statistical analysis of a sample consisting of 10,000 measurement results. The performed characterization showed that the tested device has the opening time of 0.8 ms, while the closing time is approximately 1 ms. The designed device is characterized by the minimum shutter open time of 6.4 ms.\",\"PeriodicalId\":55299,\"journal\":{\"name\":\"Bulletin of the Polish Academy of Sciences-Technical Sciences\",\"volume\":\"171 2\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Polish Academy of Sciences-Technical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/bpasts.2021.138236\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Polish Academy of Sciences-Technical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/bpasts.2021.138236","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
High performance optical shutter design with scalable aperture
. In this paper, design, construction and switching parameters of a self-made optical shutter with scalable aperture were reported. The aim of the study was to obtain the shortest possible switching times, minimum shutter open time and comparable with commercial shutter, the switch-on and switch-off times. For this purpose, numerical simulations were performed using Comsol Multiphysics 5.4. The design of the shutter and the control system have been optimized accordingly to the obtained results of numerical simulations. The optimized design was fabricated in a professional mechanical workshop and operational parameters of the constructed device were investigated. The switching parameters of the shutter, such as opening time, closing time, minimum shutter open time and other parameters were measured. The values of the parameters were determined from a statistical analysis of a sample consisting of 10,000 measurement results. The performed characterization showed that the tested device has the opening time of 0.8 ms, while the closing time is approximately 1 ms. The designed device is characterized by the minimum shutter open time of 6.4 ms.
期刊介绍:
The Bulletin of the Polish Academy of Sciences: Technical Sciences is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred:
Artificial and Computational Intelligence,
Biomedical Engineering and Biotechnology,
Civil Engineering,
Control, Informatics and Robotics,
Electronics, Telecommunication and Optoelectronics,
Mechanical and Aeronautical Engineering, Thermodynamics,
Material Science and Nanotechnology,
Power Systems and Power Electronics.