{"title":"臭氧暴露引起小鼠咳嗽过敏","authors":"Tinglei Li, Shu Zhang, Xuemei Liu, Tianyuan Xin, Yu Chen, Zhe Chen","doi":"10.4314/tjpr.v22i10.14","DOIUrl":null,"url":null,"abstract":"Purpose: To study the influence of O3 exposure on cough sensitivity, airway barrier function and airway inflammation in mice.
 Methods: Cough sensitivity was determined in healthy male C57/BL6 mice (aged 8 - 10 weeks) which were exposed to different concentrations of O3 (0.5 - 2 ppm) for 3 h daily for 9 days. Hematoxylin and eosin (H&E) staining of lung tissues, collection of BALF, and cell count were carried out. Inflammatory factor levels in pulmonary tissues were determined by enzyme-linked immunosorbent assay (ELISA), while Western blotting was used to assay TRPA1 and Claudin-1 protein expressions in lung tissues.
 Results: After 9 days of mice exposure to O3, cough sensitivity increased significantly, and TRPA1 protein was increased in pulmonary tissues, with exposure level of 1 ppm resulting in the highest level of TRPA1 protein expression. Claudin-1 expression in lung tissues of mice decreased after O3 exposure, especially in the groups exposed to O3 levels of 0.5 ppm and 2 ppm. The total cell count in alveolar lavage fluid of mice exposed to O3 was significantly increased (p < 0.05). In addition, O3 exposure increased IL-1α, IL-6 and TNF-α levels, with the most significant increase in the 0.5 ppm group (p < 0.05). Results from histology revealed that all mice had inflammatory reactions and destruction of lung tissues after O3 exposure.
 Conclusion: Exposure to O3 induces disruption of airway barrier function, infiltration of the airway by inflammatory cells, and increased secretion of inflammatory factors, thereby resulting in enhanced cough sensitivity.","PeriodicalId":23347,"journal":{"name":"Tropical Journal of Pharmaceutical Research","volume":"91 4","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ozone exposure induces cough hypersensitivity in mice\",\"authors\":\"Tinglei Li, Shu Zhang, Xuemei Liu, Tianyuan Xin, Yu Chen, Zhe Chen\",\"doi\":\"10.4314/tjpr.v22i10.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: To study the influence of O3 exposure on cough sensitivity, airway barrier function and airway inflammation in mice.
 Methods: Cough sensitivity was determined in healthy male C57/BL6 mice (aged 8 - 10 weeks) which were exposed to different concentrations of O3 (0.5 - 2 ppm) for 3 h daily for 9 days. Hematoxylin and eosin (H&E) staining of lung tissues, collection of BALF, and cell count were carried out. Inflammatory factor levels in pulmonary tissues were determined by enzyme-linked immunosorbent assay (ELISA), while Western blotting was used to assay TRPA1 and Claudin-1 protein expressions in lung tissues.
 Results: After 9 days of mice exposure to O3, cough sensitivity increased significantly, and TRPA1 protein was increased in pulmonary tissues, with exposure level of 1 ppm resulting in the highest level of TRPA1 protein expression. Claudin-1 expression in lung tissues of mice decreased after O3 exposure, especially in the groups exposed to O3 levels of 0.5 ppm and 2 ppm. The total cell count in alveolar lavage fluid of mice exposed to O3 was significantly increased (p < 0.05). In addition, O3 exposure increased IL-1α, IL-6 and TNF-α levels, with the most significant increase in the 0.5 ppm group (p < 0.05). Results from histology revealed that all mice had inflammatory reactions and destruction of lung tissues after O3 exposure.
 Conclusion: Exposure to O3 induces disruption of airway barrier function, infiltration of the airway by inflammatory cells, and increased secretion of inflammatory factors, thereby resulting in enhanced cough sensitivity.\",\"PeriodicalId\":23347,\"journal\":{\"name\":\"Tropical Journal of Pharmaceutical Research\",\"volume\":\"91 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical Journal of Pharmaceutical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/tjpr.v22i10.14\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Journal of Pharmaceutical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/tjpr.v22i10.14","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Ozone exposure induces cough hypersensitivity in mice
Purpose: To study the influence of O3 exposure on cough sensitivity, airway barrier function and airway inflammation in mice.
Methods: Cough sensitivity was determined in healthy male C57/BL6 mice (aged 8 - 10 weeks) which were exposed to different concentrations of O3 (0.5 - 2 ppm) for 3 h daily for 9 days. Hematoxylin and eosin (H&E) staining of lung tissues, collection of BALF, and cell count were carried out. Inflammatory factor levels in pulmonary tissues were determined by enzyme-linked immunosorbent assay (ELISA), while Western blotting was used to assay TRPA1 and Claudin-1 protein expressions in lung tissues.
Results: After 9 days of mice exposure to O3, cough sensitivity increased significantly, and TRPA1 protein was increased in pulmonary tissues, with exposure level of 1 ppm resulting in the highest level of TRPA1 protein expression. Claudin-1 expression in lung tissues of mice decreased after O3 exposure, especially in the groups exposed to O3 levels of 0.5 ppm and 2 ppm. The total cell count in alveolar lavage fluid of mice exposed to O3 was significantly increased (p < 0.05). In addition, O3 exposure increased IL-1α, IL-6 and TNF-α levels, with the most significant increase in the 0.5 ppm group (p < 0.05). Results from histology revealed that all mice had inflammatory reactions and destruction of lung tissues after O3 exposure.
Conclusion: Exposure to O3 induces disruption of airway barrier function, infiltration of the airway by inflammatory cells, and increased secretion of inflammatory factors, thereby resulting in enhanced cough sensitivity.
期刊介绍:
We seek to encourage pharmaceutical and allied research of tropical and international relevance and to foster multidisciplinary research and collaboration among scientists, the pharmaceutical industry and the healthcare professionals.
We publish articles in pharmaceutical sciences and related disciplines (including biotechnology, cell and molecular biology, drug utilization including adverse drug events, medical and other life sciences, and related engineering fields). Although primarily devoted to original research papers, we welcome reviews on current topics of special interest and relevance.