{"title":"146960","authors":"","doi":"10.24425/acs.2023.146960","DOIUrl":null,"url":null,"abstract":"Identificationplaysanimportantroleinrelationtocontrolobjectsandprocessesasitenables the control system to be properly tuned. The identification methods described in this paper use the Stochastic Gradient Descent algorithms, which have so far been successfully presented in machine learning. The article presents the results of the Adam and AMSGrad algorithms for online estimation of the Dielectric Electroactive Polymer actuator (DEAP) parameters. This work also aims to validate the learning by batch methodology, which allows to obtain faster convergence and more reliable parameter estimation. This approach is innovative in the field of identification of control systems. The research was supplemented with the analysis of the variable amplitude of the input signal. The dynamics of the DEAP parameter convergence depending on the normalization process was presented. Our research has shown how to effectively identify parameters with the use of innovative optimization methods. The results presented graphically confirm that this approach can be successfully applied in the field of control systems.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"3 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"146960\",\"authors\":\"\",\"doi\":\"10.24425/acs.2023.146960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identificationplaysanimportantroleinrelationtocontrolobjectsandprocessesasitenables the control system to be properly tuned. The identification methods described in this paper use the Stochastic Gradient Descent algorithms, which have so far been successfully presented in machine learning. The article presents the results of the Adam and AMSGrad algorithms for online estimation of the Dielectric Electroactive Polymer actuator (DEAP) parameters. This work also aims to validate the learning by batch methodology, which allows to obtain faster convergence and more reliable parameter estimation. This approach is innovative in the field of identification of control systems. The research was supplemented with the analysis of the variable amplitude of the input signal. The dynamics of the DEAP parameter convergence depending on the normalization process was presented. Our research has shown how to effectively identify parameters with the use of innovative optimization methods. The results presented graphically confirm that this approach can be successfully applied in the field of control systems.\",\"PeriodicalId\":48654,\"journal\":{\"name\":\"Archives of Control Sciences\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Control Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/acs.2023.146960\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Control Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/acs.2023.146960","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Identificationplaysanimportantroleinrelationtocontrolobjectsandprocessesasitenables the control system to be properly tuned. The identification methods described in this paper use the Stochastic Gradient Descent algorithms, which have so far been successfully presented in machine learning. The article presents the results of the Adam and AMSGrad algorithms for online estimation of the Dielectric Electroactive Polymer actuator (DEAP) parameters. This work also aims to validate the learning by batch methodology, which allows to obtain faster convergence and more reliable parameter estimation. This approach is innovative in the field of identification of control systems. The research was supplemented with the analysis of the variable amplitude of the input signal. The dynamics of the DEAP parameter convergence depending on the normalization process was presented. Our research has shown how to effectively identify parameters with the use of innovative optimization methods. The results presented graphically confirm that this approach can be successfully applied in the field of control systems.
期刊介绍:
Archives of Control Sciences welcomes for consideration papers on topics of significance in broadly understood control science and related areas, including: basic control theory, optimal control, optimization methods, control of complex systems, mathematical modeling of dynamic and control systems, expert and decision support systems and diverse methods of knowledge modelling and representing uncertainty (by stochastic, set-valued, fuzzy or rough set methods, etc.), robotics and flexible manufacturing systems. Related areas that are covered include information technology, parallel and distributed computations, neural networks and mathematical biomedicine, mathematical economics, applied game theory, financial engineering, business informatics and other similar fields.