{"title":"变系数模型中局部多项式等价核的分解与再现性质","authors":"Chun-Yen Wu, Li-Shan Huang, Zhezhen Jin","doi":"10.1080/10485252.2023.2217941","DOIUrl":null,"url":null,"abstract":"We consider local polynomial estimation for varying coefficient models and derive corresponding equivalent kernels that provide insights into the role of smoothing on the data and fill a gap in the literature. We show that the asymptotic equivalent kernels have an explicit decomposition with three parts: the inverse of the conditional moment matrix of covariates given the smoothing variable, the covariate vector, and the equivalent kernels of univariable local polynomials. We discuss finite-sample reproducing property which leads to zero bias in linear models with interactions between covariates and polynomials of the smoothing variable. By expressing the model in a centered form, equivalent kernels of estimating the intercept function are asymptotically identical to those of univariable local polynomials and estimators of slope functions are local analogues of slope estimators in linear models with weights assigned by equivalent kernels. Two examples are given to illustrate the weighting schemes and reproducing property.","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"39 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decomposition and reproducing property of local polynomial equivalent kernels in varying coefficient models\",\"authors\":\"Chun-Yen Wu, Li-Shan Huang, Zhezhen Jin\",\"doi\":\"10.1080/10485252.2023.2217941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider local polynomial estimation for varying coefficient models and derive corresponding equivalent kernels that provide insights into the role of smoothing on the data and fill a gap in the literature. We show that the asymptotic equivalent kernels have an explicit decomposition with three parts: the inverse of the conditional moment matrix of covariates given the smoothing variable, the covariate vector, and the equivalent kernels of univariable local polynomials. We discuss finite-sample reproducing property which leads to zero bias in linear models with interactions between covariates and polynomials of the smoothing variable. By expressing the model in a centered form, equivalent kernels of estimating the intercept function are asymptotically identical to those of univariable local polynomials and estimators of slope functions are local analogues of slope estimators in linear models with weights assigned by equivalent kernels. Two examples are given to illustrate the weighting schemes and reproducing property.\",\"PeriodicalId\":50112,\"journal\":{\"name\":\"Journal of Nonparametric Statistics\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonparametric Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10485252.2023.2217941\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonparametric Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10485252.2023.2217941","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Decomposition and reproducing property of local polynomial equivalent kernels in varying coefficient models
We consider local polynomial estimation for varying coefficient models and derive corresponding equivalent kernels that provide insights into the role of smoothing on the data and fill a gap in the literature. We show that the asymptotic equivalent kernels have an explicit decomposition with three parts: the inverse of the conditional moment matrix of covariates given the smoothing variable, the covariate vector, and the equivalent kernels of univariable local polynomials. We discuss finite-sample reproducing property which leads to zero bias in linear models with interactions between covariates and polynomials of the smoothing variable. By expressing the model in a centered form, equivalent kernels of estimating the intercept function are asymptotically identical to those of univariable local polynomials and estimators of slope functions are local analogues of slope estimators in linear models with weights assigned by equivalent kernels. Two examples are given to illustrate the weighting schemes and reproducing property.
期刊介绍:
Journal of Nonparametric Statistics provides a medium for the publication of research and survey work in nonparametric statistics and related areas. The scope includes, but is not limited to the following topics:
Nonparametric modeling,
Nonparametric function estimation,
Rank and other robust and distribution-free procedures,
Resampling methods,
Lack-of-fit testing,
Multivariate analysis,
Inference with high-dimensional data,
Dimension reduction and variable selection,
Methods for errors in variables, missing, censored, and other incomplete data structures,
Inference of stochastic processes,
Sample surveys,
Time series analysis,
Longitudinal and functional data analysis,
Nonparametric Bayes methods and decision procedures,
Semiparametric models and procedures,
Statistical methods for imaging and tomography,
Statistical inverse problems,
Financial statistics and econometrics,
Bioinformatics and comparative genomics,
Statistical algorithms and machine learning.
Both the theory and applications of nonparametric statistics are covered in the journal. Research applying nonparametric methods to medicine, engineering, technology, science and humanities is welcomed, provided the novelty and quality level are of the highest order.
Authors are encouraged to submit supplementary technical arguments, computer code, data analysed in the paper or any additional information for online publication along with the published paper.