Qiang Wei, Yao Mu, Xunhua Guo, Weijie Jiang, Guoqing Chen
{"title":"考虑消费者多阶段购物旅程的动态贝叶斯网络产品推荐:营销漏斗视角","authors":"Qiang Wei, Yao Mu, Xunhua Guo, Weijie Jiang, Guoqing Chen","doi":"10.1287/isre.2020.0277","DOIUrl":null,"url":null,"abstract":"Recommender systems are widely used by platforms/merchants to find the products that are likely to interest consumers. However, existing dynamic methods still face challenges with regard to diverse behaviors, variability in interest shifts, and the identification of psychological dynamics. Premised on the marketing funnel perspective to analyze consumer shopping journeys, this study proposes a novel and effective machine learning approach for product recommendation, namely, multi-stage dynamic Bayesian network (MS-DBN), which models the generative processes of consumers’ interactive behaviors with products in light of their stage transitions and interest shifts. In this way, consumers’ stage-interest-behavior dynamics can be learnt, especially the variability in interest shifts. This provides managerial implications for practice. MS-DBN demonstrates significant performance advantage with general applicability by extracting the generalizable regularity during shopping journeys, which compensates the diversity and sparsity frequently observed in consumer behaviors. In addition, aided by the identification strategies integrated into the learning process, the latent variables in the model can be detected such that consumers’ invisible psychological stages and interests in products can be identified from their observed behaviors, shedding light on the targeted marketing of platforms/merchants and thus enriching the practical value of the approach.","PeriodicalId":48411,"journal":{"name":"Information Systems Research","volume":"9 1","pages":"0"},"PeriodicalIF":5.0000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Bayesian Network–Based Product Recommendation Considering Consumers’ Multistage Shopping Journeys: A Marketing Funnel Perspective\",\"authors\":\"Qiang Wei, Yao Mu, Xunhua Guo, Weijie Jiang, Guoqing Chen\",\"doi\":\"10.1287/isre.2020.0277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems are widely used by platforms/merchants to find the products that are likely to interest consumers. However, existing dynamic methods still face challenges with regard to diverse behaviors, variability in interest shifts, and the identification of psychological dynamics. Premised on the marketing funnel perspective to analyze consumer shopping journeys, this study proposes a novel and effective machine learning approach for product recommendation, namely, multi-stage dynamic Bayesian network (MS-DBN), which models the generative processes of consumers’ interactive behaviors with products in light of their stage transitions and interest shifts. In this way, consumers’ stage-interest-behavior dynamics can be learnt, especially the variability in interest shifts. This provides managerial implications for practice. MS-DBN demonstrates significant performance advantage with general applicability by extracting the generalizable regularity during shopping journeys, which compensates the diversity and sparsity frequently observed in consumer behaviors. In addition, aided by the identification strategies integrated into the learning process, the latent variables in the model can be detected such that consumers’ invisible psychological stages and interests in products can be identified from their observed behaviors, shedding light on the targeted marketing of platforms/merchants and thus enriching the practical value of the approach.\",\"PeriodicalId\":48411,\"journal\":{\"name\":\"Information Systems Research\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/isre.2020.0277\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/isre.2020.0277","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
Recommender systems are widely used by platforms/merchants to find the products that are likely to interest consumers. However, existing dynamic methods still face challenges with regard to diverse behaviors, variability in interest shifts, and the identification of psychological dynamics. Premised on the marketing funnel perspective to analyze consumer shopping journeys, this study proposes a novel and effective machine learning approach for product recommendation, namely, multi-stage dynamic Bayesian network (MS-DBN), which models the generative processes of consumers’ interactive behaviors with products in light of their stage transitions and interest shifts. In this way, consumers’ stage-interest-behavior dynamics can be learnt, especially the variability in interest shifts. This provides managerial implications for practice. MS-DBN demonstrates significant performance advantage with general applicability by extracting the generalizable regularity during shopping journeys, which compensates the diversity and sparsity frequently observed in consumer behaviors. In addition, aided by the identification strategies integrated into the learning process, the latent variables in the model can be detected such that consumers’ invisible psychological stages and interests in products can be identified from their observed behaviors, shedding light on the targeted marketing of platforms/merchants and thus enriching the practical value of the approach.
期刊介绍:
ISR (Information Systems Research) is a journal of INFORMS, the Institute for Operations Research and the Management Sciences. Information Systems Research is a leading international journal of theory, research, and intellectual development, focused on information systems in organizations, institutions, the economy, and society.