gpu加速嵌入式系统的优化本地路径规划器实现

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Embedded Systems Letters Pub Date : 2023-09-25 DOI:10.1109/LES.2023.3298733
Filippo Muzzini;Nicola Capodieci;Federico Ramanzin;Paolo Burgio
{"title":"gpu加速嵌入式系统的优化本地路径规划器实现","authors":"Filippo Muzzini;Nicola Capodieci;Federico Ramanzin;Paolo Burgio","doi":"10.1109/LES.2023.3298733","DOIUrl":null,"url":null,"abstract":"Autonomous vehicles are latency-sensitive systems. The planning phase is a critical component of such systems, during which the in-vehicle compute platform is responsible for determining the future maneuvers that the vehicle will follow. In this letter, we present a GPU-accelerated optimized implementation of the Frenet Path Planner, a widely known path planning algorithm. Unlike the current state of the art, our implementation accelerates the entire algorithm, including the path generation and collision avoidance phases. We measure the execution time of our implementation and demonstrate dramatic speedups compared to the CPU baseline implementation. Additionally, we evaluate the impact of different precision types (double, float, and half) on trajectory errors to investigate the tradeoff between completion latencies and computation precision.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"15 4","pages":"214-217"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Local Path Planner Implementation for GPU-Accelerated Embedded Systems\",\"authors\":\"Filippo Muzzini;Nicola Capodieci;Federico Ramanzin;Paolo Burgio\",\"doi\":\"10.1109/LES.2023.3298733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous vehicles are latency-sensitive systems. The planning phase is a critical component of such systems, during which the in-vehicle compute platform is responsible for determining the future maneuvers that the vehicle will follow. In this letter, we present a GPU-accelerated optimized implementation of the Frenet Path Planner, a widely known path planning algorithm. Unlike the current state of the art, our implementation accelerates the entire algorithm, including the path generation and collision avoidance phases. We measure the execution time of our implementation and demonstrate dramatic speedups compared to the CPU baseline implementation. Additionally, we evaluate the impact of different precision types (double, float, and half) on trajectory errors to investigate the tradeoff between completion latencies and computation precision.\",\"PeriodicalId\":56143,\"journal\":{\"name\":\"IEEE Embedded Systems Letters\",\"volume\":\"15 4\",\"pages\":\"214-217\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Embedded Systems Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10194312/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10194312/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

自动驾驶汽车是延迟敏感系统。规划阶段是此类系统的关键组成部分,在此期间,车载计算平台负责确定车辆将遵循的未来机动。在本文中,我们提出了一个gpu加速的优化实现Frenet路径规划器,一个广为人知的路径规划算法。与目前最先进的技术不同,我们的实现加速了整个算法,包括路径生成和避免碰撞阶段。我们测量了实现的执行时间,并演示了与CPU基准实现相比的显著加速。此外,我们评估了不同精度类型(double, float, half)对轨迹误差的影响,以研究完成延迟和计算精度之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimized Local Path Planner Implementation for GPU-Accelerated Embedded Systems
Autonomous vehicles are latency-sensitive systems. The planning phase is a critical component of such systems, during which the in-vehicle compute platform is responsible for determining the future maneuvers that the vehicle will follow. In this letter, we present a GPU-accelerated optimized implementation of the Frenet Path Planner, a widely known path planning algorithm. Unlike the current state of the art, our implementation accelerates the entire algorithm, including the path generation and collision avoidance phases. We measure the execution time of our implementation and demonstrate dramatic speedups compared to the CPU baseline implementation. Additionally, we evaluate the impact of different precision types (double, float, and half) on trajectory errors to investigate the tradeoff between completion latencies and computation precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
期刊最新文献
Time-Sensitive Networking in Low Latency Cyber-Physical Systems FedTinyWolf -A Memory Efficient Federated Embedded Learning Mechanism SCALLER: Standard Cell Assembled and Local Layout Effect-Based Ring Oscillators Table of Contents IEEE Embedded Systems Letters Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1