Keith S. Noll, Michael E. Brown, Marc W. Buie, William M. Grundy, Harold F. Levison, Simone Marchi, Catherine B. Olkin, S. Alan Stern, Harold A. Weaver
{"title":"特洛伊小行星卫星,环和活动","authors":"Keith S. Noll, Michael E. Brown, Marc W. Buie, William M. Grundy, Harold F. Levison, Simone Marchi, Catherine B. Olkin, S. Alan Stern, Harold A. Weaver","doi":"10.1007/s11214-023-01001-w","DOIUrl":null,"url":null,"abstract":"Abstract The Lucy mission will encounter five Jupiter Trojans during its mission with three of the five already known to be multiple systems. These include a near-equal-mass binary, a small and widely separated satellite, and one intermediate-size satellite system. This chapter reviews the current state of knowledge of Trojan asteroid satellites in the context of similar satellite systems in other small body populations. The prospects for the detection of additional satellites as well as other near-body phenomena are considered. The scientific utility of satellites makes their observation with Lucy an important scientific priority for the mission.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Trojan Asteroid Satellites, Rings, and Activity\",\"authors\":\"Keith S. Noll, Michael E. Brown, Marc W. Buie, William M. Grundy, Harold F. Levison, Simone Marchi, Catherine B. Olkin, S. Alan Stern, Harold A. Weaver\",\"doi\":\"10.1007/s11214-023-01001-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Lucy mission will encounter five Jupiter Trojans during its mission with three of the five already known to be multiple systems. These include a near-equal-mass binary, a small and widely separated satellite, and one intermediate-size satellite system. This chapter reviews the current state of knowledge of Trojan asteroid satellites in the context of similar satellite systems in other small body populations. The prospects for the detection of additional satellites as well as other near-body phenomena are considered. The scientific utility of satellites makes their observation with Lucy an important scientific priority for the mission.\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11214-023-01001-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11214-023-01001-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Abstract The Lucy mission will encounter five Jupiter Trojans during its mission with three of the five already known to be multiple systems. These include a near-equal-mass binary, a small and widely separated satellite, and one intermediate-size satellite system. This chapter reviews the current state of knowledge of Trojan asteroid satellites in the context of similar satellite systems in other small body populations. The prospects for the detection of additional satellites as well as other near-body phenomena are considered. The scientific utility of satellites makes their observation with Lucy an important scientific priority for the mission.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.