Qingyan Pan , Zepeng Lei , Yingjie Zhao , Wei Zhang
{"title":"共价有机框架对化学催化的微环境影响","authors":"Qingyan Pan , Zepeng Lei , Yingjie Zhao , Wei Zhang","doi":"10.1016/j.enchem.2023.100107","DOIUrl":null,"url":null,"abstract":"<div><p>Inspired by enzymatic catalysis, a variety of covalent organic frameworks (COFs), which have precisely engineered microenvironments enabled by the well-defined porous channels and cavities with catalytically active sites built in, have been developed to mimic the catalytic process of enzymes. The structure diversity and customizability of COFs make them an ideal platform for studying the catalyst structure-activity relationship in heterogeneous catalysis and obtaining a thorough understanding of the catalytic mechanisms. In this review, we summarize the recent progress in the development of COF materials for catalysis applications, with a particular focus on their microenvironment effects. Representative examples of organocatalysis, asymmetric organocatalysis, and metal-supported catalysis utilizing the microenvironment effect enabled by diversified COF materials are discussed. Finally, we outline the key fundamental issues to be addressed and provide our perspectives on the future of COF-based catalysis.</p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"5 6","pages":"Article 100107"},"PeriodicalIF":22.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microenvironment effect of covalent organic frameworks on chemical catalysis\",\"authors\":\"Qingyan Pan , Zepeng Lei , Yingjie Zhao , Wei Zhang\",\"doi\":\"10.1016/j.enchem.2023.100107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Inspired by enzymatic catalysis, a variety of covalent organic frameworks (COFs), which have precisely engineered microenvironments enabled by the well-defined porous channels and cavities with catalytically active sites built in, have been developed to mimic the catalytic process of enzymes. The structure diversity and customizability of COFs make them an ideal platform for studying the catalyst structure-activity relationship in heterogeneous catalysis and obtaining a thorough understanding of the catalytic mechanisms. In this review, we summarize the recent progress in the development of COF materials for catalysis applications, with a particular focus on their microenvironment effects. Representative examples of organocatalysis, asymmetric organocatalysis, and metal-supported catalysis utilizing the microenvironment effect enabled by diversified COF materials are discussed. Finally, we outline the key fundamental issues to be addressed and provide our perspectives on the future of COF-based catalysis.</p></div>\",\"PeriodicalId\":307,\"journal\":{\"name\":\"EnergyChem\",\"volume\":\"5 6\",\"pages\":\"Article 100107\"},\"PeriodicalIF\":22.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EnergyChem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589778023000106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EnergyChem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589778023000106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Microenvironment effect of covalent organic frameworks on chemical catalysis
Inspired by enzymatic catalysis, a variety of covalent organic frameworks (COFs), which have precisely engineered microenvironments enabled by the well-defined porous channels and cavities with catalytically active sites built in, have been developed to mimic the catalytic process of enzymes. The structure diversity and customizability of COFs make them an ideal platform for studying the catalyst structure-activity relationship in heterogeneous catalysis and obtaining a thorough understanding of the catalytic mechanisms. In this review, we summarize the recent progress in the development of COF materials for catalysis applications, with a particular focus on their microenvironment effects. Representative examples of organocatalysis, asymmetric organocatalysis, and metal-supported catalysis utilizing the microenvironment effect enabled by diversified COF materials are discussed. Finally, we outline the key fundamental issues to be addressed and provide our perspectives on the future of COF-based catalysis.
期刊介绍:
EnergyChem, a reputable journal, focuses on publishing high-quality research and review articles within the realm of chemistry, chemical engineering, and materials science with a specific emphasis on energy applications. The priority areas covered by the journal include:Solar energy,Energy harvesting devices,Fuel cells,Hydrogen energy,Bioenergy and biofuels,Batteries,Supercapacitors,Electrocatalysis and photocatalysis,Energy storage and energy conversion,Carbon capture and storage