拉伸荷载作用下搭接粘结层厚度的声发射测试分析

IF 1 4区 工程技术 Q4 INSTRUMENTS & INSTRUMENTATION Insight Pub Date : 2023-10-01 DOI:10.1784/insi.2023.65.10.545
K Mohamed Bak, K Kalaichelvan, M Abdur Rahman, S Haque, S Shaul Hameed, A S Selvakumar
{"title":"拉伸荷载作用下搭接粘结层厚度的声发射测试分析","authors":"K Mohamed Bak, K Kalaichelvan, M Abdur Rahman, S Haque, S Shaul Hameed, A S Selvakumar","doi":"10.1784/insi.2023.65.10.545","DOIUrl":null,"url":null,"abstract":"This paper aims to investigate the bonding strength of lap joints under tensile loading by altering the thickness of the adherent layer. The results show that increasing the adherent layer thickness of the bonded lap joint reduced stress concentration, indicating a higher stress transmission between the overlapping regions. Acoustic emission (AE) signals were used to identify the different failure modes and their frequency ranges by subjecting the AE signals to parametric analysis, fast Fourier transform (FFT) analysis, continuous wavelet transform (CWT) analysis and discrete wavelet transform (DWT) analysis. FFT analysis identified the frequency ranges of adhesive failure, fibre tear failure and mixed failure. At the same time, DWT was more effective at identifying the frequency ranges of the failure modes associated with varying adherent layer thicknesses in lap joints. Adhesive failure was characterised by low amplitudes, low frequency ranges and low energy levels. In contrast, delamination displayed moderate amplitudes, moderate frequency ranges and medium energy levels. High amplitudes, high frequency ranges, high energy levels and strong signal strength indicated mixed failures.","PeriodicalId":13956,"journal":{"name":"Insight","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of acoustic emission testing on the adherent layer thickness of lap joints under tensile loading\",\"authors\":\"K Mohamed Bak, K Kalaichelvan, M Abdur Rahman, S Haque, S Shaul Hameed, A S Selvakumar\",\"doi\":\"10.1784/insi.2023.65.10.545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to investigate the bonding strength of lap joints under tensile loading by altering the thickness of the adherent layer. The results show that increasing the adherent layer thickness of the bonded lap joint reduced stress concentration, indicating a higher stress transmission between the overlapping regions. Acoustic emission (AE) signals were used to identify the different failure modes and their frequency ranges by subjecting the AE signals to parametric analysis, fast Fourier transform (FFT) analysis, continuous wavelet transform (CWT) analysis and discrete wavelet transform (DWT) analysis. FFT analysis identified the frequency ranges of adhesive failure, fibre tear failure and mixed failure. At the same time, DWT was more effective at identifying the frequency ranges of the failure modes associated with varying adherent layer thicknesses in lap joints. Adhesive failure was characterised by low amplitudes, low frequency ranges and low energy levels. In contrast, delamination displayed moderate amplitudes, moderate frequency ranges and medium energy levels. High amplitudes, high frequency ranges, high energy levels and strong signal strength indicated mixed failures.\",\"PeriodicalId\":13956,\"journal\":{\"name\":\"Insight\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insight\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1784/insi.2023.65.10.545\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insight","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1784/insi.2023.65.10.545","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

通过改变粘接层的厚度,研究了在拉伸载荷作用下搭接接头的粘接强度。结果表明:增加搭接接头的黏附层厚度,可以减小搭接接头的应力集中,表明搭接接头重叠区域之间的应力传递增强;通过对声发射信号进行参数化分析、快速傅立叶变换(FFT)分析、连续小波变换(CWT)分析和离散小波变换(DWT)分析,利用声发射信号识别不同的失效模式及其频率范围。FFT分析确定了粘结破坏、纤维撕裂破坏和混合破坏的频率范围。同时,DWT能更有效地识别搭接中随黏附层厚度变化的破坏模式的频率范围。胶粘剂失效的特征是低振幅、低频率范围和低能级。相反,分层表现为中等幅度、中等频率范围和中等能级。高振幅,高频率范围,高能量水平和强信号强度表明混合故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of acoustic emission testing on the adherent layer thickness of lap joints under tensile loading
This paper aims to investigate the bonding strength of lap joints under tensile loading by altering the thickness of the adherent layer. The results show that increasing the adherent layer thickness of the bonded lap joint reduced stress concentration, indicating a higher stress transmission between the overlapping regions. Acoustic emission (AE) signals were used to identify the different failure modes and their frequency ranges by subjecting the AE signals to parametric analysis, fast Fourier transform (FFT) analysis, continuous wavelet transform (CWT) analysis and discrete wavelet transform (DWT) analysis. FFT analysis identified the frequency ranges of adhesive failure, fibre tear failure and mixed failure. At the same time, DWT was more effective at identifying the frequency ranges of the failure modes associated with varying adherent layer thicknesses in lap joints. Adhesive failure was characterised by low amplitudes, low frequency ranges and low energy levels. In contrast, delamination displayed moderate amplitudes, moderate frequency ranges and medium energy levels. High amplitudes, high frequency ranges, high energy levels and strong signal strength indicated mixed failures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insight
Insight 工程技术-材料科学:表征与测试
CiteScore
1.50
自引率
9.10%
发文量
0
审稿时长
2.8 months
期刊介绍: Official Journal of The British Institute of Non-Destructive Testing - includes original research and devlopment papers, technical and scientific reviews and case studies in the fields of NDT and CM.
期刊最新文献
ISSUE INFORMATION Innovation Ecosystem Dynamics, Value and Learning I: What Can Hamilton Tell Us? Realizing the Promise of Digital Engineering: Planning, Implementing, and Evolving the Ecosystem Requirements Statements Are Transfer Functions: An Insight from Model-Based Systems Engineering Feelings and Physics: Emotional, Psychological, and Other Soft Human Requirements, by Model-Based Systems Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1