genpathmox:一个R包来处理偏最小二乘结构方程建模中的众多分类变量和异质性

IF 2.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS R Journal Pub Date : 2023-11-01 DOI:10.32614/rj-2023-051
Giuseppe Lamberti,
{"title":"genpathmox:一个R包来处理偏最小二乘结构方程建模中的众多分类变量和异质性","authors":"Giuseppe Lamberti,","doi":"10.32614/rj-2023-051","DOIUrl":null,"url":null,"abstract":"Partial least squares structural equation modeling (PLS-SEM), combined with the analysis of the effects of categorical variables after estimating the model, is a well-established statistical approach to the study of complex relationships between variables. However, the statistical methods and software packages available are limited when we are interested in assessing the effects of several categorical variables and shaping different groups following different models. Following the framework established by @Lamberti16, we have developed the  [genpathmox](https://CRAN.R-project.org/package=genpathmox) *R* package for handling a large number of categorical variables when faced with heterogeneity in PLS-SEM. The package has functions for various aspects of the analysis of heterogeneity in PLS-SEM models, including estimation, visualization, and hypothesis testing. In this paper, we describe the implementation of genpathmox in detail and demonstrate its usefulness by analyzing employee satisfaction data.","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"110 3-6","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"genpathmox: An R Package to Tackle Numerous Categorical Variables and Heterogeneity in Partial Least Squares Structural Equation Modeling\",\"authors\":\"Giuseppe Lamberti,\",\"doi\":\"10.32614/rj-2023-051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partial least squares structural equation modeling (PLS-SEM), combined with the analysis of the effects of categorical variables after estimating the model, is a well-established statistical approach to the study of complex relationships between variables. However, the statistical methods and software packages available are limited when we are interested in assessing the effects of several categorical variables and shaping different groups following different models. Following the framework established by @Lamberti16, we have developed the  [genpathmox](https://CRAN.R-project.org/package=genpathmox) *R* package for handling a large number of categorical variables when faced with heterogeneity in PLS-SEM. The package has functions for various aspects of the analysis of heterogeneity in PLS-SEM models, including estimation, visualization, and hypothesis testing. In this paper, we describe the implementation of genpathmox in detail and demonstrate its usefulness by analyzing employee satisfaction data.\",\"PeriodicalId\":51285,\"journal\":{\"name\":\"R Journal\",\"volume\":\"110 3-6\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2023-051\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2023-051","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

偏最小二乘结构方程模型(PLS-SEM)是一种成熟的研究变量间复杂关系的统计方法,结合对模型估计后的分类变量效应分析。然而,当我们对评估几个分类变量的影响和根据不同模型塑造不同的群体感兴趣时,可用的统计方法和软件包是有限的。根据@Lamberti16建立的框架,我们开发了 [genpathmox](https://CRAN.R-project.org/package=genpathmox) *R* package forÂ处理PLS-SEM中面对异质性时的大量分类变量。该软件包具有分析异质性in PLS-SEM模型的各个方面的功能,Â包括估计,可视化和假设检验。在本文中,我们详细描述了of genpathmoxÂ的实现,并通过分析员工满意度数据来证明其实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
genpathmox: An R Package to Tackle Numerous Categorical Variables and Heterogeneity in Partial Least Squares Structural Equation Modeling
Partial least squares structural equation modeling (PLS-SEM), combined with the analysis of the effects of categorical variables after estimating the model, is a well-established statistical approach to the study of complex relationships between variables. However, the statistical methods and software packages available are limited when we are interested in assessing the effects of several categorical variables and shaping different groups following different models. Following the framework established by @Lamberti16, we have developed the  [genpathmox](https://CRAN.R-project.org/package=genpathmox) *R* package for handling a large number of categorical variables when faced with heterogeneity in PLS-SEM. The package has functions for various aspects of the analysis of heterogeneity in PLS-SEM models, including estimation, visualization, and hypothesis testing. In this paper, we describe the implementation of genpathmox in detail and demonstrate its usefulness by analyzing employee satisfaction data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
R Journal
R Journal COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍: The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R. The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to: - put their contribution in context, in particular discuss related R functions or packages; - explain the motivation for their contribution; - provide code examples that are reproducible.
期刊最新文献
binGroup2: Statistical Tools for Infection Identification via Group Testing. glmmPen: High Dimensional Penalized Generalized Linear Mixed Models. Three-Way Correspondence Analysis in R nlstac: Non-Gradient Separable Nonlinear Least Squares Fitting A Workflow for Estimating and Visualising Excess Mortality During the COVID-19 Pandemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1