None XinWang, Qi Chao Yang, Hai tao Wang, Yu Zheng, Geng hang Zhong, Jiang wei Zhao
{"title":"二维硫化物的反应可控制备及其电催化性能","authors":"None XinWang, Qi Chao Yang, Hai tao Wang, Yu Zheng, Geng hang Zhong, Jiang wei Zhao","doi":"10.1088/1742-6596/2645/1/012017","DOIUrl":null,"url":null,"abstract":"Abstract Two-dimensional sulfide has been widely recognized as a promising new type of catalyst to replace precious metals due to its adjustable electronic structure, low cost, and high stability. In this paper, monolayer molybdenum disulfide (MoS 2 ) and layer-controlled tungsten disulfide (WS 2 ) were successfully prepared by chemical vapor deposition (CVD). The two prepared materials’ morphology, structure, and thickness were investigated. The catalytic performance of two-dimensional sulfides was studied under an acidic environment. The results exhibit good catalytic performance toward hydrogen evolution with 63.6 mV/dec low Tafel slope of MoS 2 and 72.8 mV/dec of WS 2 .","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"93 1","pages":"0"},"PeriodicalIF":4.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reaction Controllable preparation and electrocatalytic performance of two-dimensional sulfides\",\"authors\":\"None XinWang, Qi Chao Yang, Hai tao Wang, Yu Zheng, Geng hang Zhong, Jiang wei Zhao\",\"doi\":\"10.1088/1742-6596/2645/1/012017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Two-dimensional sulfide has been widely recognized as a promising new type of catalyst to replace precious metals due to its adjustable electronic structure, low cost, and high stability. In this paper, monolayer molybdenum disulfide (MoS 2 ) and layer-controlled tungsten disulfide (WS 2 ) were successfully prepared by chemical vapor deposition (CVD). The two prepared materials’ morphology, structure, and thickness were investigated. The catalytic performance of two-dimensional sulfides was studied under an acidic environment. The results exhibit good catalytic performance toward hydrogen evolution with 63.6 mV/dec low Tafel slope of MoS 2 and 72.8 mV/dec of WS 2 .\",\"PeriodicalId\":44008,\"journal\":{\"name\":\"Journal of Physics-Photonics\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics-Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-6596/2645/1/012017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2645/1/012017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Reaction Controllable preparation and electrocatalytic performance of two-dimensional sulfides
Abstract Two-dimensional sulfide has been widely recognized as a promising new type of catalyst to replace precious metals due to its adjustable electronic structure, low cost, and high stability. In this paper, monolayer molybdenum disulfide (MoS 2 ) and layer-controlled tungsten disulfide (WS 2 ) were successfully prepared by chemical vapor deposition (CVD). The two prepared materials’ morphology, structure, and thickness were investigated. The catalytic performance of two-dimensional sulfides was studied under an acidic environment. The results exhibit good catalytic performance toward hydrogen evolution with 63.6 mV/dec low Tafel slope of MoS 2 and 72.8 mV/dec of WS 2 .