Pub Date : 2024-09-15DOI: 10.1088/2515-7647/ad68df
Ho-Chun Lin, Zeyu Wang and Chia Wei Hsu
Wavefront shaping can tailor multipath interference to control multiple scattering of waves in complex optical systems. However, full-wave simulations that capture multiple scattering are computationally demanding given the large system size and the large number of input channels. Recently, an ‘augmented partial factorization’ (APF) method was proposed to significantly speed-up such full-wave simulations. In this tutorial, we illustrate how to perform wavefront shaping simulations with the APF method using the open-source frequency-domain electromagnetic scattering solver MESTI. We present the foundational concepts and then walk through four examples: computing the scattering matrix of a slab with random permittivities, open high-transmission channels through disorder, focusing inside disorder with phase conjugation, and reflection matrix computation in a spatial focused-beam basis. The goal is to lower the barrier for researchers to use simulations to explore the rich phenomena enabled by wavefront shaping.
{"title":"Wavefront shaping simulations with augmented partial factorization","authors":"Ho-Chun Lin, Zeyu Wang and Chia Wei Hsu","doi":"10.1088/2515-7647/ad68df","DOIUrl":"https://doi.org/10.1088/2515-7647/ad68df","url":null,"abstract":"Wavefront shaping can tailor multipath interference to control multiple scattering of waves in complex optical systems. However, full-wave simulations that capture multiple scattering are computationally demanding given the large system size and the large number of input channels. Recently, an ‘augmented partial factorization’ (APF) method was proposed to significantly speed-up such full-wave simulations. In this tutorial, we illustrate how to perform wavefront shaping simulations with the APF method using the open-source frequency-domain electromagnetic scattering solver MESTI. We present the foundational concepts and then walk through four examples: computing the scattering matrix of a slab with random permittivities, open high-transmission channels through disorder, focusing inside disorder with phase conjugation, and reflection matrix computation in a spatial focused-beam basis. The goal is to lower the barrier for researchers to use simulations to explore the rich phenomena enabled by wavefront shaping.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.1088/2515-7647/ad6ed4
Henna Farheen, Suraj Joshi, J Christoph Scheytt, Viktor Myroshnychenko, Jens Förstner
Phased arrays are vital in communication systems and have received significant interest in the field of optoelectronics and photonics, enabling a wide range of applications such as LiDAR, holography, and wireless communication. In this work, we present a blazed grating antenna that is optimized to have upward radiation efficiency as high as 80% with a compact footprint of 3.5 µm × 2 µm at an operational wavelength of 1.55 µm. Our numerical investigations demonstrate that this antenna in a