基于元强化学习的小行星防御自主末制导导航算法

IF 4.6 Q1 OPTICS Journal of Physics-Photonics Pub Date : 2023-11-01 DOI:10.1088/1742-6596/2632/1/012032
Yuhao Pu, Chao Bei
{"title":"基于元强化学习的小行星防御自主末制导导航算法","authors":"Yuhao Pu, Chao Bei","doi":"10.1088/1742-6596/2632/1/012032","DOIUrl":null,"url":null,"abstract":"Abstract This paper presented a robust angle-only guidance and navigation algorithm for asteroid defense missions based on meta-reinforcement learning. A recurrent neural network, trained via proximal policy optimization, is used to map the line-of-sight angles captured in real-time by the onboard camera to the optimal thrust. The neural network effectively replaces the roles of the navigation and guidance system while simultaneously removing the dependence on dynamic and observation models. The guidance and navigation model is tested on numerical simulations of a simulated mission directed to asteroid Bennu. The objective is to enable the spacecraft to hit the asteroid precisely, despite the presence of scattered initial conditions, uncertain model parameters, thruster control error, and attitude control and measurement error.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"90 3","pages":"0"},"PeriodicalIF":4.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Angle-only Autonomous Terminal Guidance and Navigation Algorithm for Asteroid Defense based on Meta-reinforcement Learning\",\"authors\":\"Yuhao Pu, Chao Bei\",\"doi\":\"10.1088/1742-6596/2632/1/012032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presented a robust angle-only guidance and navigation algorithm for asteroid defense missions based on meta-reinforcement learning. A recurrent neural network, trained via proximal policy optimization, is used to map the line-of-sight angles captured in real-time by the onboard camera to the optimal thrust. The neural network effectively replaces the roles of the navigation and guidance system while simultaneously removing the dependence on dynamic and observation models. The guidance and navigation model is tested on numerical simulations of a simulated mission directed to asteroid Bennu. The objective is to enable the spacecraft to hit the asteroid precisely, despite the presence of scattered initial conditions, uncertain model parameters, thruster control error, and attitude control and measurement error.\",\"PeriodicalId\":44008,\"journal\":{\"name\":\"Journal of Physics-Photonics\",\"volume\":\"90 3\",\"pages\":\"0\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics-Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-6596/2632/1/012032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2632/1/012032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于元强化学习的小行星防御任务鲁棒纯角度制导导航算法。通过近端策略优化训练的递归神经网络用于将机载摄像机实时捕获的视线角度映射到最佳推力。神经网络有效地取代了导航制导系统的作用,同时消除了对动态模型和观测模型的依赖。对该制导导航模型进行了针对小行星Bennu的模拟任务的数值模拟。目标是使航天器能够精确地撞击小行星,尽管存在分散的初始条件,不确定的模型参数,推进器控制误差,姿态控制和测量误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Angle-only Autonomous Terminal Guidance and Navigation Algorithm for Asteroid Defense based on Meta-reinforcement Learning
Abstract This paper presented a robust angle-only guidance and navigation algorithm for asteroid defense missions based on meta-reinforcement learning. A recurrent neural network, trained via proximal policy optimization, is used to map the line-of-sight angles captured in real-time by the onboard camera to the optimal thrust. The neural network effectively replaces the roles of the navigation and guidance system while simultaneously removing the dependence on dynamic and observation models. The guidance and navigation model is tested on numerical simulations of a simulated mission directed to asteroid Bennu. The objective is to enable the spacecraft to hit the asteroid precisely, despite the presence of scattered initial conditions, uncertain model parameters, thruster control error, and attitude control and measurement error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
0.00%
发文量
27
审稿时长
12 weeks
期刊最新文献
Wavefront shaping simulations with augmented partial factorization An efficient compact blazed grating antenna for optical phased arrays Highly reflective and high-Q thin resonant subwavelength gratings A practical guide to digital micro-mirror devices (DMDs) for wavefront shaping A modular GUI-based program for genetic algorithm-based feedback-assisted wavefront shaping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1