基于深度卷积神经网络的铜搅拌摩擦焊接接头微观力学性能预测

AKSHANSH MISHRA, Asmita Suman
{"title":"基于深度卷积神经网络的铜搅拌摩擦焊接接头微观力学性能预测","authors":"AKSHANSH MISHRA, Asmita Suman","doi":"10.26628/simp.wtr.v95.1150.25-31","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Network (CNN) is a special type of Artificial Neural Network which takes input in the form of an image. Like Artificial Neural Network they consist of weights that are estimated during training, neurons (activation functions), and an objective (loss function). CNN is finding various applications in image recognition, semantic segmentation, object detection, and localization. The present work deals with the prediction of the welding efficiency of the Friction Stir Welded joints on the basis of microstructure images by carrying out training on 3000 microstructure images and further testing on 300 microstructure images. The obtained results showed an accuracy of 80 % on the validation dataset.","PeriodicalId":52939,"journal":{"name":"Przeglad Spawalnictwa","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Convolutional Neural Network Algorithm for Prediction of the Mechanical Properties of Friction Stir Welded Copper Joints from its Microstructures\",\"authors\":\"AKSHANSH MISHRA, Asmita Suman\",\"doi\":\"10.26628/simp.wtr.v95.1150.25-31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional Neural Network (CNN) is a special type of Artificial Neural Network which takes input in the form of an image. Like Artificial Neural Network they consist of weights that are estimated during training, neurons (activation functions), and an objective (loss function). CNN is finding various applications in image recognition, semantic segmentation, object detection, and localization. The present work deals with the prediction of the welding efficiency of the Friction Stir Welded joints on the basis of microstructure images by carrying out training on 3000 microstructure images and further testing on 300 microstructure images. The obtained results showed an accuracy of 80 % on the validation dataset.\",\"PeriodicalId\":52939,\"journal\":{\"name\":\"Przeglad Spawalnictwa\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Przeglad Spawalnictwa\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26628/simp.wtr.v95.1150.25-31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Przeglad Spawalnictwa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26628/simp.wtr.v95.1150.25-31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(CNN)是一种特殊类型的人工神经网络,它以图像的形式接受输入。像人工神经网络一样,它们由训练过程中估计的权重、神经元(激活函数)和目标(损失函数)组成。CNN正在寻找图像识别、语义分割、目标检测和定位等方面的各种应用。本工作通过对3000张显微组织图像进行训练,对300张显微组织图像进行进一步测试,对搅拌摩擦焊接接头的焊接效率进行了预测。在验证数据集上获得的结果显示准确率为80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Convolutional Neural Network Algorithm for Prediction of the Mechanical Properties of Friction Stir Welded Copper Joints from its Microstructures
Convolutional Neural Network (CNN) is a special type of Artificial Neural Network which takes input in the form of an image. Like Artificial Neural Network they consist of weights that are estimated during training, neurons (activation functions), and an objective (loss function). CNN is finding various applications in image recognition, semantic segmentation, object detection, and localization. The present work deals with the prediction of the welding efficiency of the Friction Stir Welded joints on the basis of microstructure images by carrying out training on 3000 microstructure images and further testing on 300 microstructure images. The obtained results showed an accuracy of 80 % on the validation dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
9 weeks
期刊最新文献
Konsekwencje stosowania nakładek na złączach spawanych Coaxial Laser Wire Deposition of AISI 316L steel - research on influence of processing parameters Influence of Groove shape on the Mechanical Properties of Welded Commercial Steel Deep Convolutional Neural Network Algorithm for Prediction of the Mechanical Properties of Friction Stir Welded Copper Joints from its Microstructures Wyznaczanie wielkości krytycznych odporności na pękanie stali i złączy spawanych
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1