{"title":"大型螺旋装置中na类Kr离子杂质播种实验的电子冲击激发研究","authors":"Shivam Gupta, Tetsutarou Oishi, Izumi Murakami","doi":"10.3390/atoms11110142","DOIUrl":null,"url":null,"abstract":"In this work, a krypton gas impurity seeding experiment was conducted in a Large Helical Device. Emission lines from the Na-like Kr ion in the extreme ultraviolet wavelength region, such as 22.00 nm, 17.89 nm, 16.51 nm, 15.99 nm, and 14.08 nm, respective to 2p63p(2P1/2o)−2p63s(2S1/2), 2p63p(2P3/2o)−2p63s(2S1/2), 2p63d(2D3/2)−2p63p(2P3/2o), 2p63d(2D5/2)−2p63p(2P3/2o), and 2p63d(2D3/2)−2p63p(2P1/2o) transitions, are observed. In order to generate a theoretical synthetic spectrum, an extensive calculation concerning the excitation of the Kr25+ ion through electron impact was performed for the development of a suitable plasma model. For this, the relativistic multiconfiguration Dirac–Hartree–Fock method was employed along with its extension to the relativistic configuration interaction method to compute the relativistic bound-state wave functions and excitation energies of the fine structure levels using the General Relativistic Atomic Structure Package-2018. In addition, another set of calculations was carried out utilizing the relativistic many-body perturbation theory and relativistic configuration interaction methods integrated within the Flexible Atomic Code. To investigate the reliability of our findings, the results of excitation energies, transition probabilities, and weighted oscillator strengths of different dipole-allowed transitions obtained from these different methods are presented and compared with the available data. Further, the detailed electron impact excitation cross-sections and their respective rate coefficients are obtained for various fine structure resolved transitions using the fully relativistic distorted wave method. Rate coefficients, calculated using the Flexible Atomic Code for population and de-population kinetic processes, are integrated into the collisional-radiative plasma model to generate a theoretical spectrum. Further, the emission lines observed from the Kr25+ ion in the impurity seeding experiment were compared with the present plasma model spectrum, demonstrating a noteworthy overall agreement between the measurement and the theoretical synthetic spectrum.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":"32 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Electron Impact Excitation of Na-like Kr Ion for Impurity Seeding Experiment in Large Helical Device\",\"authors\":\"Shivam Gupta, Tetsutarou Oishi, Izumi Murakami\",\"doi\":\"10.3390/atoms11110142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a krypton gas impurity seeding experiment was conducted in a Large Helical Device. Emission lines from the Na-like Kr ion in the extreme ultraviolet wavelength region, such as 22.00 nm, 17.89 nm, 16.51 nm, 15.99 nm, and 14.08 nm, respective to 2p63p(2P1/2o)−2p63s(2S1/2), 2p63p(2P3/2o)−2p63s(2S1/2), 2p63d(2D3/2)−2p63p(2P3/2o), 2p63d(2D5/2)−2p63p(2P3/2o), and 2p63d(2D3/2)−2p63p(2P1/2o) transitions, are observed. In order to generate a theoretical synthetic spectrum, an extensive calculation concerning the excitation of the Kr25+ ion through electron impact was performed for the development of a suitable plasma model. For this, the relativistic multiconfiguration Dirac–Hartree–Fock method was employed along with its extension to the relativistic configuration interaction method to compute the relativistic bound-state wave functions and excitation energies of the fine structure levels using the General Relativistic Atomic Structure Package-2018. In addition, another set of calculations was carried out utilizing the relativistic many-body perturbation theory and relativistic configuration interaction methods integrated within the Flexible Atomic Code. To investigate the reliability of our findings, the results of excitation energies, transition probabilities, and weighted oscillator strengths of different dipole-allowed transitions obtained from these different methods are presented and compared with the available data. Further, the detailed electron impact excitation cross-sections and their respective rate coefficients are obtained for various fine structure resolved transitions using the fully relativistic distorted wave method. Rate coefficients, calculated using the Flexible Atomic Code for population and de-population kinetic processes, are integrated into the collisional-radiative plasma model to generate a theoretical spectrum. Further, the emission lines observed from the Kr25+ ion in the impurity seeding experiment were compared with the present plasma model spectrum, demonstrating a noteworthy overall agreement between the measurement and the theoretical synthetic spectrum.\",\"PeriodicalId\":8629,\"journal\":{\"name\":\"Atoms\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atoms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/atoms11110142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atoms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/atoms11110142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
Study of Electron Impact Excitation of Na-like Kr Ion for Impurity Seeding Experiment in Large Helical Device
In this work, a krypton gas impurity seeding experiment was conducted in a Large Helical Device. Emission lines from the Na-like Kr ion in the extreme ultraviolet wavelength region, such as 22.00 nm, 17.89 nm, 16.51 nm, 15.99 nm, and 14.08 nm, respective to 2p63p(2P1/2o)−2p63s(2S1/2), 2p63p(2P3/2o)−2p63s(2S1/2), 2p63d(2D3/2)−2p63p(2P3/2o), 2p63d(2D5/2)−2p63p(2P3/2o), and 2p63d(2D3/2)−2p63p(2P1/2o) transitions, are observed. In order to generate a theoretical synthetic spectrum, an extensive calculation concerning the excitation of the Kr25+ ion through electron impact was performed for the development of a suitable plasma model. For this, the relativistic multiconfiguration Dirac–Hartree–Fock method was employed along with its extension to the relativistic configuration interaction method to compute the relativistic bound-state wave functions and excitation energies of the fine structure levels using the General Relativistic Atomic Structure Package-2018. In addition, another set of calculations was carried out utilizing the relativistic many-body perturbation theory and relativistic configuration interaction methods integrated within the Flexible Atomic Code. To investigate the reliability of our findings, the results of excitation energies, transition probabilities, and weighted oscillator strengths of different dipole-allowed transitions obtained from these different methods are presented and compared with the available data. Further, the detailed electron impact excitation cross-sections and their respective rate coefficients are obtained for various fine structure resolved transitions using the fully relativistic distorted wave method. Rate coefficients, calculated using the Flexible Atomic Code for population and de-population kinetic processes, are integrated into the collisional-radiative plasma model to generate a theoretical spectrum. Further, the emission lines observed from the Kr25+ ion in the impurity seeding experiment were compared with the present plasma model spectrum, demonstrating a noteworthy overall agreement between the measurement and the theoretical synthetic spectrum.
AtomsPhysics and Astronomy-Nuclear and High Energy Physics
CiteScore
2.70
自引率
22.20%
发文量
128
审稿时长
8 weeks
期刊介绍:
Atoms (ISSN 2218-2004) is an international and cross-disciplinary scholarly journal of scientific studies related to all aspects of the atom. It publishes reviews, regular research papers, and communications; there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. There are, in addition, unique features of this journal: -manuscripts regarding research proposals and research ideas will be particularly welcomed. -computed data, program listings, and files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Scopes: -experimental and theoretical atomic, molecular, and nuclear physics, chemical physics -the study of atoms, molecules, nuclei and their interactions and constituents (protons, neutrons, and electrons) -quantum theory, applications and foundations -microparticles, clusters -exotic systems (muons, quarks, anti-matter) -atomic, molecular, and nuclear spectroscopy and collisions -nuclear energy (fusion and fission), radioactive decay -nuclear magnetic resonance (NMR) and electron spin resonance (ESR), hyperfine interactions -orbitals, valence and bonding behavior -atomic and molecular properties (energy levels, radiative properties, magnetic moments, collisional data) and photon interactions