Wang Hongyu, Sun Hang, Mao Jizhou, Zhang Qin, Song Laidong
{"title":"退火时间对Fe-Mn-Si-Cr-Ni合金固溶组织和记忆性能的影响","authors":"Wang Hongyu, Sun Hang, Mao Jizhou, Zhang Qin, Song Laidong","doi":"10.1142/s1793604724510019","DOIUrl":null,"url":null,"abstract":"Annealing plays a pivotal role in optimizing the morphology and quantity of cooling martensite within the solid solution matrix of additively manufactured Fe-based memory alloys. In this study, we utilized laser filament deposition to create Fe-17Mn-6Si-9Cr-5Ni alloy, and subsequently compared the microstructure and memory properties of the alloy following two treatments: a 900[Formula: see text]C×60 min solution treatment and a solid solution + annealing treatment at various durations at 600[Formula: see text]C. Our aim was to investigate how annealing time impacts the memory properties of additively manufactured Fe-Mn-Si-Cr-Ni alloys in their solid solution state, focusing on microstructural changes during the metamorphic and revertive states. The findings reveal that after the solution treatment, the alloy contains a higher number of cooling martensite units, but their arrangement is disordered, indicating a lower degree of order. However, after a 10 min annealing treatment, the quantity of cooling martensite slightly diminishes, while their arrangement becomes more orderly. With prolonged annealing, both the quantity of cooling martensite and the grain size of the alloy decrease significantly. Consequently, after a 10-min annealing treatment, the alloy exhibits a 31% increase in shape recovery rate under a 6% pre-deformation compared to the alloy subjected solely to the solution treatment, and the recoverable strain reaches 4.59%. This demonstrates that an appropriately timed annealing process can transform the disordered cooling martensite within the solid solution structure of additive manufacturing Fe-based memory alloys into a more regular arrangement, thereby enhancing their memory performance.","PeriodicalId":12701,"journal":{"name":"Functional Materials Letters","volume":"12 8","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of annealing time on solid solution microstructure and memory properties of additive Fe-Mn-Si-Cr-Ni alloy\",\"authors\":\"Wang Hongyu, Sun Hang, Mao Jizhou, Zhang Qin, Song Laidong\",\"doi\":\"10.1142/s1793604724510019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Annealing plays a pivotal role in optimizing the morphology and quantity of cooling martensite within the solid solution matrix of additively manufactured Fe-based memory alloys. In this study, we utilized laser filament deposition to create Fe-17Mn-6Si-9Cr-5Ni alloy, and subsequently compared the microstructure and memory properties of the alloy following two treatments: a 900[Formula: see text]C×60 min solution treatment and a solid solution + annealing treatment at various durations at 600[Formula: see text]C. Our aim was to investigate how annealing time impacts the memory properties of additively manufactured Fe-Mn-Si-Cr-Ni alloys in their solid solution state, focusing on microstructural changes during the metamorphic and revertive states. The findings reveal that after the solution treatment, the alloy contains a higher number of cooling martensite units, but their arrangement is disordered, indicating a lower degree of order. However, after a 10 min annealing treatment, the quantity of cooling martensite slightly diminishes, while their arrangement becomes more orderly. With prolonged annealing, both the quantity of cooling martensite and the grain size of the alloy decrease significantly. Consequently, after a 10-min annealing treatment, the alloy exhibits a 31% increase in shape recovery rate under a 6% pre-deformation compared to the alloy subjected solely to the solution treatment, and the recoverable strain reaches 4.59%. This demonstrates that an appropriately timed annealing process can transform the disordered cooling martensite within the solid solution structure of additive manufacturing Fe-based memory alloys into a more regular arrangement, thereby enhancing their memory performance.\",\"PeriodicalId\":12701,\"journal\":{\"name\":\"Functional Materials Letters\",\"volume\":\"12 8\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Materials Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793604724510019\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Materials Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793604724510019","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of annealing time on solid solution microstructure and memory properties of additive Fe-Mn-Si-Cr-Ni alloy
Annealing plays a pivotal role in optimizing the morphology and quantity of cooling martensite within the solid solution matrix of additively manufactured Fe-based memory alloys. In this study, we utilized laser filament deposition to create Fe-17Mn-6Si-9Cr-5Ni alloy, and subsequently compared the microstructure and memory properties of the alloy following two treatments: a 900[Formula: see text]C×60 min solution treatment and a solid solution + annealing treatment at various durations at 600[Formula: see text]C. Our aim was to investigate how annealing time impacts the memory properties of additively manufactured Fe-Mn-Si-Cr-Ni alloys in their solid solution state, focusing on microstructural changes during the metamorphic and revertive states. The findings reveal that after the solution treatment, the alloy contains a higher number of cooling martensite units, but their arrangement is disordered, indicating a lower degree of order. However, after a 10 min annealing treatment, the quantity of cooling martensite slightly diminishes, while their arrangement becomes more orderly. With prolonged annealing, both the quantity of cooling martensite and the grain size of the alloy decrease significantly. Consequently, after a 10-min annealing treatment, the alloy exhibits a 31% increase in shape recovery rate under a 6% pre-deformation compared to the alloy subjected solely to the solution treatment, and the recoverable strain reaches 4.59%. This demonstrates that an appropriately timed annealing process can transform the disordered cooling martensite within the solid solution structure of additive manufacturing Fe-based memory alloys into a more regular arrangement, thereby enhancing their memory performance.
期刊介绍:
Functional Materials Letters is an international peer-reviewed scientific journal for original contributions to research on the synthesis, behavior and characterization of functional materials. The journal seeks to provide a rapid forum for the communication of novel research of high quality and with an interdisciplinary flavor. The journal is an ideal forum for communication amongst materials scientists and engineers, chemists and chemical engineers, and physicists in the dynamic fields associated with functional materials.
Functional materials are designed to make use of their natural or engineered functionalities to respond to changes in electrical and magnetic fields, physical and chemical environment, etc. These design considerations are fundamentally different to those relevant for structural materials and are the focus of this journal. Functional materials play an increasingly important role in the development of the field of materials science and engineering.
The scope of the journal covers theoretical and experimental studies of functional materials, characterization and new applications-related research on functional materials in macro-, micro- and nano-scale science and engineering. Among the topics covered are ferroelectric, multiferroic, ferromagnetic, magneto-optical, optoelectric, thermoelectric, energy conversion and energy storage, sustainable energy and shape memory materials.