{"title":"空间地理人口分类的图神经网络框架","authors":"Stefano De Sabbata, Pengyuan Liu","doi":"10.1080/13658816.2023.2254382","DOIUrl":null,"url":null,"abstract":"Geodemographic classifications are exceptional tools for geographic analysis, business and policy-making, providing an overview of the socio-demographic structure of a region by creating an unsupervised, bottom-up classification of its areas based on a large set of variables. Classic approaches can require time-consuming preprocessing of input variables and are frequently a-spatial processes. In this study, we present a groundbreaking, systematic investigation of the use of graph neural networks for spatial geodemographic classification. Using Greater London as a case study, we compare a range of graph autoencoder designs with the official London Output Area Classification and baseline classifications developed using spatial fuzzy c-means. The results show that our framework based on a Node Attributes-focused Graph AutoEncoder (NAGAE) can perform similarly to classic approaches on class homogeneity metrics while providing higher spatial clustering. We conclude by discussing the current limitations of the proposed framework and its potential to develop into a new paradigm for creating a range of geodemographic classifications, from simple, local ones to complex classifications able to incorporate a range of spatial relationships into the process.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"48 1","pages":"0"},"PeriodicalIF":4.3000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A graph neural network framework for spatial geodemographic classification\",\"authors\":\"Stefano De Sabbata, Pengyuan Liu\",\"doi\":\"10.1080/13658816.2023.2254382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geodemographic classifications are exceptional tools for geographic analysis, business and policy-making, providing an overview of the socio-demographic structure of a region by creating an unsupervised, bottom-up classification of its areas based on a large set of variables. Classic approaches can require time-consuming preprocessing of input variables and are frequently a-spatial processes. In this study, we present a groundbreaking, systematic investigation of the use of graph neural networks for spatial geodemographic classification. Using Greater London as a case study, we compare a range of graph autoencoder designs with the official London Output Area Classification and baseline classifications developed using spatial fuzzy c-means. The results show that our framework based on a Node Attributes-focused Graph AutoEncoder (NAGAE) can perform similarly to classic approaches on class homogeneity metrics while providing higher spatial clustering. We conclude by discussing the current limitations of the proposed framework and its potential to develop into a new paradigm for creating a range of geodemographic classifications, from simple, local ones to complex classifications able to incorporate a range of spatial relationships into the process.\",\"PeriodicalId\":14162,\"journal\":{\"name\":\"International Journal of Geographical Information Science\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geographical Information Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13658816.2023.2254382\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13658816.2023.2254382","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A graph neural network framework for spatial geodemographic classification
Geodemographic classifications are exceptional tools for geographic analysis, business and policy-making, providing an overview of the socio-demographic structure of a region by creating an unsupervised, bottom-up classification of its areas based on a large set of variables. Classic approaches can require time-consuming preprocessing of input variables and are frequently a-spatial processes. In this study, we present a groundbreaking, systematic investigation of the use of graph neural networks for spatial geodemographic classification. Using Greater London as a case study, we compare a range of graph autoencoder designs with the official London Output Area Classification and baseline classifications developed using spatial fuzzy c-means. The results show that our framework based on a Node Attributes-focused Graph AutoEncoder (NAGAE) can perform similarly to classic approaches on class homogeneity metrics while providing higher spatial clustering. We conclude by discussing the current limitations of the proposed framework and its potential to develop into a new paradigm for creating a range of geodemographic classifications, from simple, local ones to complex classifications able to incorporate a range of spatial relationships into the process.
期刊介绍:
International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.