{"title":"通过器件仿真评估具有Cu2O空穴传输层的MoTe2基太阳能电池的性能","authors":"Naimur Rahman, Md. Dulal Haque, Md. Ferdous Rahman, Md. Mominul Islam, Most. Airin Nahar Juthi, Anita Rani Roy, Most. Alema Akter, Md. Foridul Islam","doi":"10.1007/s43939-023-00061-7","DOIUrl":null,"url":null,"abstract":"Abstract In this study, the SCAPS-1D tool has been used to numerically examine the performance of Transition Metal Dichalcogenides (TMDC) based Molybdenum ditelluride (MoTe 2 ) solar cells containing CdS electron transport layer (ETL) and Cu 2 O hole transport layer (HTL). Based on the photovoltaic cell parameters, including absorber layer thickness, temperature, defect density, the effects of series and shunt resistance, and electron affinity, the structure of both MoTe 2 based solar cells with and without the usage of the HTL has been analyzed. With 1.1 μm thickness of MoTe 2 and doping density of 5 × 10 15 cm −3 , Al/FTO/CdS/MoTe 2 /Cu 2 O/Ni heterojunction’s solar cell proposed structure has been optimized. The final power conversion efficiency (PCE) = 32.38%, open-circuit voltage (V oc ) = 1.07 V, short-circuit current (J sc ) = 35.12 mA/cm 2 , and fill factor (FF) = 86.32% has been determined from the optimized structure. The determined results indicate a suitable path for the realization of low cost and high efficiency MoTe 2 -based solar cell.","PeriodicalId":34625,"journal":{"name":"Discover Materials","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the performance of MoTe2 based solar cell with Cu2O hole transport layer through device simulation\",\"authors\":\"Naimur Rahman, Md. Dulal Haque, Md. Ferdous Rahman, Md. Mominul Islam, Most. Airin Nahar Juthi, Anita Rani Roy, Most. Alema Akter, Md. Foridul Islam\",\"doi\":\"10.1007/s43939-023-00061-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, the SCAPS-1D tool has been used to numerically examine the performance of Transition Metal Dichalcogenides (TMDC) based Molybdenum ditelluride (MoTe 2 ) solar cells containing CdS electron transport layer (ETL) and Cu 2 O hole transport layer (HTL). Based on the photovoltaic cell parameters, including absorber layer thickness, temperature, defect density, the effects of series and shunt resistance, and electron affinity, the structure of both MoTe 2 based solar cells with and without the usage of the HTL has been analyzed. With 1.1 μm thickness of MoTe 2 and doping density of 5 × 10 15 cm −3 , Al/FTO/CdS/MoTe 2 /Cu 2 O/Ni heterojunction’s solar cell proposed structure has been optimized. The final power conversion efficiency (PCE) = 32.38%, open-circuit voltage (V oc ) = 1.07 V, short-circuit current (J sc ) = 35.12 mA/cm 2 , and fill factor (FF) = 86.32% has been determined from the optimized structure. The determined results indicate a suitable path for the realization of low cost and high efficiency MoTe 2 -based solar cell.\",\"PeriodicalId\":34625,\"journal\":{\"name\":\"Discover Materials\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discover Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s43939-023-00061-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43939-023-00061-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assessing the performance of MoTe2 based solar cell with Cu2O hole transport layer through device simulation
Abstract In this study, the SCAPS-1D tool has been used to numerically examine the performance of Transition Metal Dichalcogenides (TMDC) based Molybdenum ditelluride (MoTe 2 ) solar cells containing CdS electron transport layer (ETL) and Cu 2 O hole transport layer (HTL). Based on the photovoltaic cell parameters, including absorber layer thickness, temperature, defect density, the effects of series and shunt resistance, and electron affinity, the structure of both MoTe 2 based solar cells with and without the usage of the HTL has been analyzed. With 1.1 μm thickness of MoTe 2 and doping density of 5 × 10 15 cm −3 , Al/FTO/CdS/MoTe 2 /Cu 2 O/Ni heterojunction’s solar cell proposed structure has been optimized. The final power conversion efficiency (PCE) = 32.38%, open-circuit voltage (V oc ) = 1.07 V, short-circuit current (J sc ) = 35.12 mA/cm 2 , and fill factor (FF) = 86.32% has been determined from the optimized structure. The determined results indicate a suitable path for the realization of low cost and high efficiency MoTe 2 -based solar cell.
期刊介绍:
Discover Materials is part of the Discover journal series committed to providing a streamlined submission process, rapid review and publication, and a high level of author service at every stage. It is a broad, open access journal publishing research from across all fields of materials research.
Discover Materials covers all areas where materials are activators for innovation and disruption, providing cutting-edge research findings to researchers, academicians, students, and engineers. It considers the whole value chain, ranging from fundamental and applied research to the synthesis, characterisation, modelling and application of materials.
Moreover, we especially welcome papers connected to so-called ‘green materials’, which offer unique properties including natural abundance, low toxicity, economically affordable and versatility in terms of physical and chemical properties. They are the activators of an eco-sustainable economy serving all innovation sectors. Indeed, they can be applied in numerous scientific and technological applications including energy, electronics, building, construction and infrastructure, materials science and engineering applications and pollution management and technology. For instance, biomass-based materials can be developed as a source for biodiesel and bioethanol production, and transformed into advanced functionalized materials for applications such as the transformation of chitin into chitosan which can be further used for biomedicine, biomaterials and tissue engineering applications. Green materials for electronics are also a key vector concerning the integration of novel devices on conformable, flexible substrates with free-of-form surfaces for innovative product development. We also welcome new developments grounded on Artificial Intelligence to model, design and simulate materials and to gain new insights into materials by discovering new patterns and relations in the data.