Permute-MAML:探索用于少量学习的工业表面缺陷检测算法

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Complex & Intelligent Systems Pub Date : 2023-09-13 DOI:10.1007/s40747-023-01219-9
ShanChen Pang, WenShang Zhao, ShuDong Wang, Lin Zhang, Shuang Wang
{"title":"Permute-MAML:探索用于少量学习的工业表面缺陷检测算法","authors":"ShanChen Pang, WenShang Zhao, ShuDong Wang, Lin Zhang, Shuang Wang","doi":"10.1007/s40747-023-01219-9","DOIUrl":null,"url":null,"abstract":"Abstract Computer vision has developed rapidly in recent years, invigorating the area of industrial surface defect detection while also providing it with modern perception capabilities. Few-shot learning has emerged as a result of sample size limitations, with MAML framework being the most widely used few-shot learning framework over the past few years that learns concepts from sampled classification tasks, which is considered to have the key advantage of aligning training and testing objectives. Industrial surface defects typically have fewer samples for training, so we propose MAML-based framework: Permute-MAML, which mainly consists of improved MAML framework and neural network model. In this paper, we concentrate on improving MAML framework with respect to its stability and explore a simple procedure: few-shot learning of its evaluation metrics over the whole classification model. The experimental results demonstrate that the proposed framework significantly enhances the stability of MAML framework and achieves comparatively high accuracy in industrial surface defect detection.","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"31 1","pages":"0"},"PeriodicalIF":5.0000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Permute-MAML: exploring industrial surface defect detection algorithms for few-shot learning\",\"authors\":\"ShanChen Pang, WenShang Zhao, ShuDong Wang, Lin Zhang, Shuang Wang\",\"doi\":\"10.1007/s40747-023-01219-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Computer vision has developed rapidly in recent years, invigorating the area of industrial surface defect detection while also providing it with modern perception capabilities. Few-shot learning has emerged as a result of sample size limitations, with MAML framework being the most widely used few-shot learning framework over the past few years that learns concepts from sampled classification tasks, which is considered to have the key advantage of aligning training and testing objectives. Industrial surface defects typically have fewer samples for training, so we propose MAML-based framework: Permute-MAML, which mainly consists of improved MAML framework and neural network model. In this paper, we concentrate on improving MAML framework with respect to its stability and explore a simple procedure: few-shot learning of its evaluation metrics over the whole classification model. The experimental results demonstrate that the proposed framework significantly enhances the stability of MAML framework and achieves comparatively high accuracy in industrial surface defect detection.\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-023-01219-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40747-023-01219-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

计算机视觉近年来发展迅速,为工业表面缺陷检测领域注入了活力,同时也为其提供了现代化的感知能力。由于样本量的限制,出现了少量学习,MAML框架是过去几年使用最广泛的少量学习框架,它从抽样分类任务中学习概念,它被认为具有将训练和测试目标对齐的关键优势。工业表面缺陷的训练样本较少,因此我们提出了基于MAML的框架:Permute-MAML,该框架主要由改进的MAML框架和神经网络模型组成。在本文中,我们专注于改进MAML框架的稳定性,并探索了一个简单的过程:在整个分类模型上对其评估指标进行少量学习。实验结果表明,该框架显著提高了MAML框架的稳定性,在工业表面缺陷检测中达到了较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Permute-MAML: exploring industrial surface defect detection algorithms for few-shot learning
Abstract Computer vision has developed rapidly in recent years, invigorating the area of industrial surface defect detection while also providing it with modern perception capabilities. Few-shot learning has emerged as a result of sample size limitations, with MAML framework being the most widely used few-shot learning framework over the past few years that learns concepts from sampled classification tasks, which is considered to have the key advantage of aligning training and testing objectives. Industrial surface defects typically have fewer samples for training, so we propose MAML-based framework: Permute-MAML, which mainly consists of improved MAML framework and neural network model. In this paper, we concentrate on improving MAML framework with respect to its stability and explore a simple procedure: few-shot learning of its evaluation metrics over the whole classification model. The experimental results demonstrate that the proposed framework significantly enhances the stability of MAML framework and achieves comparatively high accuracy in industrial surface defect detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
期刊最新文献
HFA-Net: hierarchical feature aggregation network for micro-expression recognition Manet: motion-aware network for video action recognition A low-carbon scheduling method based on improved ant colony algorithm for underground electric transportation vehicles Vehicle positioning systems in tunnel environments: a review A survey of security threats in federated learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1