{"title":"tada - glr - openstage跨声速轴流压气机RANS求解器的验证与验证","authors":"Xiao He, Mingmin Zhu, Kailong Xia, Klausmann Fabian, Jinfang Teng, Mehdi Vahdati","doi":"10.33737/jgpps/158034","DOIUrl":null,"url":null,"abstract":"This paper presents a comprehensive validation and verification study of turbomachinery Reynolds-averaged Navier-Stokes flow solvers on the transonic axial compressor TUDa-GLR-OpenStage. Two commercial solvers namely Ansys CFX and Numeca FineTurbo are adopted to provide the benchmark solutions, which can be used for verification of other RANS solvers in the future. Based on these solvers, five sets of grids, two advection schemes (i.e., central difference and second-order upwind), four turbulence models (i.e., SA, SA-RC, SST and EARSM) and two rotor-stator interface models (i.e., mixing plane and sliding plane) are investigated to quantify their effects on predicting the performance and the flow field of the compressor stage. Results show that the choices of grid density and turbulence model are most sensitive to the prediction, leading to 5% and 7% variation in compressor performance characteristics, respectively. Regarding the choice of grid density, a method to estimate the grid discretization error is demonstrated, which is transferrable to other cases. Regarding the choice of turbulence model, the EARSM model is found overall most accurate among the investigated models, and the limitations and deficiencies of the rest models are discussed in detail based on the analysis of the mean flow fields and the eddy viscosity fields. The grids and the major CFD results presented in this work are open-accessed to the community for further research. The results and discussions presented in this paper provide a useful reference for future practices of RANS simulations for compressors.","PeriodicalId":53002,"journal":{"name":"Journal of the Global Power and Propulsion Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Validation and verification of RANS solvers for TUDa-GLR-OpenStage transonic axial compressor\",\"authors\":\"Xiao He, Mingmin Zhu, Kailong Xia, Klausmann Fabian, Jinfang Teng, Mehdi Vahdati\",\"doi\":\"10.33737/jgpps/158034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a comprehensive validation and verification study of turbomachinery Reynolds-averaged Navier-Stokes flow solvers on the transonic axial compressor TUDa-GLR-OpenStage. Two commercial solvers namely Ansys CFX and Numeca FineTurbo are adopted to provide the benchmark solutions, which can be used for verification of other RANS solvers in the future. Based on these solvers, five sets of grids, two advection schemes (i.e., central difference and second-order upwind), four turbulence models (i.e., SA, SA-RC, SST and EARSM) and two rotor-stator interface models (i.e., mixing plane and sliding plane) are investigated to quantify their effects on predicting the performance and the flow field of the compressor stage. Results show that the choices of grid density and turbulence model are most sensitive to the prediction, leading to 5% and 7% variation in compressor performance characteristics, respectively. Regarding the choice of grid density, a method to estimate the grid discretization error is demonstrated, which is transferrable to other cases. Regarding the choice of turbulence model, the EARSM model is found overall most accurate among the investigated models, and the limitations and deficiencies of the rest models are discussed in detail based on the analysis of the mean flow fields and the eddy viscosity fields. The grids and the major CFD results presented in this work are open-accessed to the community for further research. The results and discussions presented in this paper provide a useful reference for future practices of RANS simulations for compressors.\",\"PeriodicalId\":53002,\"journal\":{\"name\":\"Journal of the Global Power and Propulsion Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Global Power and Propulsion Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33737/jgpps/158034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Global Power and Propulsion Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33737/jgpps/158034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Validation and verification of RANS solvers for TUDa-GLR-OpenStage transonic axial compressor
This paper presents a comprehensive validation and verification study of turbomachinery Reynolds-averaged Navier-Stokes flow solvers on the transonic axial compressor TUDa-GLR-OpenStage. Two commercial solvers namely Ansys CFX and Numeca FineTurbo are adopted to provide the benchmark solutions, which can be used for verification of other RANS solvers in the future. Based on these solvers, five sets of grids, two advection schemes (i.e., central difference and second-order upwind), four turbulence models (i.e., SA, SA-RC, SST and EARSM) and two rotor-stator interface models (i.e., mixing plane and sliding plane) are investigated to quantify their effects on predicting the performance and the flow field of the compressor stage. Results show that the choices of grid density and turbulence model are most sensitive to the prediction, leading to 5% and 7% variation in compressor performance characteristics, respectively. Regarding the choice of grid density, a method to estimate the grid discretization error is demonstrated, which is transferrable to other cases. Regarding the choice of turbulence model, the EARSM model is found overall most accurate among the investigated models, and the limitations and deficiencies of the rest models are discussed in detail based on the analysis of the mean flow fields and the eddy viscosity fields. The grids and the major CFD results presented in this work are open-accessed to the community for further research. The results and discussions presented in this paper provide a useful reference for future practices of RANS simulations for compressors.