先进金属离子电池用金属碲化物的设计与工程策略

IF 14 1区 化学 Q1 CHEMISTRY, APPLIED 能源化学 Pub Date : 2023-10-13 DOI:10.1016/j.jechem.2023.09.044
Wenmiao Zhao , Xiaoyuan Shi , Bo Liu , Hiroshi Ueno , Ting Deng , Weitao Zheng
{"title":"先进金属离子电池用金属碲化物的设计与工程策略","authors":"Wenmiao Zhao ,&nbsp;Xiaoyuan Shi ,&nbsp;Bo Liu ,&nbsp;Hiroshi Ueno ,&nbsp;Ting Deng ,&nbsp;Weitao Zheng","doi":"10.1016/j.jechem.2023.09.044","DOIUrl":null,"url":null,"abstract":"<div><p>Owning various crystal structures and high theoretical capacity, metal tellurides are emerging as promising electrode materials for high-performance metal-ion batteries (MBs). Since metal telluride-based MBs are quite new, fundamental issues raise regarding the energy storage mechanism and other aspects affecting electrochemical performance. Severe volume expansion, low intrinsic conductivity and slow ion diffusion kinetics jeopardize the performance of metal tellurides, so that rational design and engineering are crucial to circumvent these disadvantages. Herein, this review provides an in-depth discussion of recent investigations and progresses of metal tellurides, beginning with a critical discussion on the energy storage mechanisms of metal tellurides in various MBs. In the following, recent design and engineering strategies of metal tellurides, including morphology engineering, compositing, defect engineering and heterostructure construction, for high-performance MBs are summarized. The primary focus is to present a comprehensive understanding of the structural evolution based on the mechanism and corresponding effects of dimension control, composition, electron configuration and structural complexity on the electrochemical performance. In closing, outlooks and prospects for future development of metal tellurides are proposed. This work also highlights the promising directions of design and engineering strategies of metal tellurides with high performance and low cost.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 579-598"},"PeriodicalIF":14.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The design and engineering strategies of metal tellurides for advanced metal-ion batteries\",\"authors\":\"Wenmiao Zhao ,&nbsp;Xiaoyuan Shi ,&nbsp;Bo Liu ,&nbsp;Hiroshi Ueno ,&nbsp;Ting Deng ,&nbsp;Weitao Zheng\",\"doi\":\"10.1016/j.jechem.2023.09.044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Owning various crystal structures and high theoretical capacity, metal tellurides are emerging as promising electrode materials for high-performance metal-ion batteries (MBs). Since metal telluride-based MBs are quite new, fundamental issues raise regarding the energy storage mechanism and other aspects affecting electrochemical performance. Severe volume expansion, low intrinsic conductivity and slow ion diffusion kinetics jeopardize the performance of metal tellurides, so that rational design and engineering are crucial to circumvent these disadvantages. Herein, this review provides an in-depth discussion of recent investigations and progresses of metal tellurides, beginning with a critical discussion on the energy storage mechanisms of metal tellurides in various MBs. In the following, recent design and engineering strategies of metal tellurides, including morphology engineering, compositing, defect engineering and heterostructure construction, for high-performance MBs are summarized. The primary focus is to present a comprehensive understanding of the structural evolution based on the mechanism and corresponding effects of dimension control, composition, electron configuration and structural complexity on the electrochemical performance. In closing, outlooks and prospects for future development of metal tellurides are proposed. This work also highlights the promising directions of design and engineering strategies of metal tellurides with high performance and low cost.</p></div>\",\"PeriodicalId\":67498,\"journal\":{\"name\":\"能源化学\",\"volume\":\"89 \",\"pages\":\"Pages 579-598\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"能源化学\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495623005648\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005648","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

金属碲化物具有多种晶体结构和较高的理论容量,是高性能金属离子电池极具发展前景的材料。由于金属碲化物基MBs是一种较新的材料,因此在储能机理和影响电化学性能的其他方面提出了根本性的问题。严重的体积膨胀、低的本征电导率和缓慢的离子扩散动力学会危及金属碲化物的性能,因此合理的设计和工程是克服这些缺点的关键。本文综述了近年来金属碲化物的研究进展,重点讨论了金属碲化物在各种MBs中的储能机理。本文综述了近年来高性能金属碲化物的设计和工程策略,包括形态工程、复合、缺陷工程和异质结构构建。本研究的主要重点是基于结构演化的机理以及尺寸控制、组成、电子组态和结构复杂性对电化学性能的相应影响,对结构演化进行全面的理解。最后,对金属碲化物的未来发展进行了展望。这一工作也突出了高性能低成本金属碲化物的设计和工程策略的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The design and engineering strategies of metal tellurides for advanced metal-ion batteries

Owning various crystal structures and high theoretical capacity, metal tellurides are emerging as promising electrode materials for high-performance metal-ion batteries (MBs). Since metal telluride-based MBs are quite new, fundamental issues raise regarding the energy storage mechanism and other aspects affecting electrochemical performance. Severe volume expansion, low intrinsic conductivity and slow ion diffusion kinetics jeopardize the performance of metal tellurides, so that rational design and engineering are crucial to circumvent these disadvantages. Herein, this review provides an in-depth discussion of recent investigations and progresses of metal tellurides, beginning with a critical discussion on the energy storage mechanisms of metal tellurides in various MBs. In the following, recent design and engineering strategies of metal tellurides, including morphology engineering, compositing, defect engineering and heterostructure construction, for high-performance MBs are summarized. The primary focus is to present a comprehensive understanding of the structural evolution based on the mechanism and corresponding effects of dimension control, composition, electron configuration and structural complexity on the electrochemical performance. In closing, outlooks and prospects for future development of metal tellurides are proposed. This work also highlights the promising directions of design and engineering strategies of metal tellurides with high performance and low cost.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
23.60
自引率
0.00%
发文量
2875
期刊最新文献
Durable poly(binaphthyl-co-p-terphenyl piperidinium)-based anion exchange membranes with dual side chains Tuning the surface electronic structure of noble metal aerogels to promote the electrocatalytic oxygen reduction Sulfur doped iron-nitrogen-hard carbon nanosheets as efficient and robust noble metal-free catalysts for oxygen reduction reaction in PEMFC A new review of single-ion conducting polymer electrolytes in the light of ion transport mechanisms Chemico-biological conversion of carbon dioxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1