用于近地天体识别的封闭轨道空间度量

A. Vananti, Moritz Meyer zu Westram, T. Schildknecht
{"title":"用于近地天体识别的封闭轨道空间度量","authors":"A. Vananti, Moritz Meyer zu Westram, T. Schildknecht","doi":"10.1007/s10569-023-10165-0","DOIUrl":null,"url":null,"abstract":"Abstract In the characterization of the space debris environment, the computation of the orbit of the debris objects is usually conducted by considering the association of short sequences of observations called tracklets. In case the orbits can be already determined with sufficient accuracy from single tracklets, it is necessary to define a criterion to decide if two calculated orbits correspond to the same object. One possibility is to introduce a definition of distance between orbits and to consider a threshold below which the two orbits are considered to be originating from the same object. The concept of distance is quite general and leaves room to different definitions. There are different ways to describe and to parameterize the space of the possible orbits. In this article, new metrics are proposed which extend distance definitions suggested in previous works. In these metrics in addition to orbital plane and orbital shape, also the position of the object along the orbit is taken into account. The obtained distances are scaled according to the orbit covariance. This has the advantage that the distance between orbits with different accuracy can be evaluated. The proposed metrics are then compared with existing common metrics to assess their applicability.","PeriodicalId":72537,"journal":{"name":"Celestial mechanics and dynamical astronomy","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metrics on space of closed orbits for near-Earth objects identification\",\"authors\":\"A. Vananti, Moritz Meyer zu Westram, T. Schildknecht\",\"doi\":\"10.1007/s10569-023-10165-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the characterization of the space debris environment, the computation of the orbit of the debris objects is usually conducted by considering the association of short sequences of observations called tracklets. In case the orbits can be already determined with sufficient accuracy from single tracklets, it is necessary to define a criterion to decide if two calculated orbits correspond to the same object. One possibility is to introduce a definition of distance between orbits and to consider a threshold below which the two orbits are considered to be originating from the same object. The concept of distance is quite general and leaves room to different definitions. There are different ways to describe and to parameterize the space of the possible orbits. In this article, new metrics are proposed which extend distance definitions suggested in previous works. In these metrics in addition to orbital plane and orbital shape, also the position of the object along the orbit is taken into account. The obtained distances are scaled according to the orbit covariance. This has the advantage that the distance between orbits with different accuracy can be evaluated. The proposed metrics are then compared with existing common metrics to assess their applicability.\",\"PeriodicalId\":72537,\"journal\":{\"name\":\"Celestial mechanics and dynamical astronomy\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Celestial mechanics and dynamical astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10569-023-10165-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Celestial mechanics and dynamical astronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10569-023-10165-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要在空间碎片环境表征中,碎片物体的轨道计算通常考虑被称为轨迹的短序列观测的关联。如果轨道已经可以由单个轨道确定,并且具有足够的精度,则需要定义一个准则来确定两个计算轨道是否对应于同一目标。一种可能性是引入轨道间距离的定义,并考虑一个阈值,低于这个阈值,两个轨道就被认为是源自同一物体。距离的概念很一般,给不同的定义留有余地。有不同的方法来描述和参数化可能轨道的空间。在本文中,提出了新的度量,扩展了以前的工作中提出的距离定义。在这些度量中,除了轨道平面和轨道形状外,还考虑了物体沿轨道的位置。根据轨道协方差对得到的距离进行缩放。这样做的好处是可以计算出不同精度的轨道之间的距离。然后将建议的度量标准与现有的通用度量标准进行比较,以评估它们的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metrics on space of closed orbits for near-Earth objects identification
Abstract In the characterization of the space debris environment, the computation of the orbit of the debris objects is usually conducted by considering the association of short sequences of observations called tracklets. In case the orbits can be already determined with sufficient accuracy from single tracklets, it is necessary to define a criterion to decide if two calculated orbits correspond to the same object. One possibility is to introduce a definition of distance between orbits and to consider a threshold below which the two orbits are considered to be originating from the same object. The concept of distance is quite general and leaves room to different definitions. There are different ways to describe and to parameterize the space of the possible orbits. In this article, new metrics are proposed which extend distance definitions suggested in previous works. In these metrics in addition to orbital plane and orbital shape, also the position of the object along the orbit is taken into account. The obtained distances are scaled according to the orbit covariance. This has the advantage that the distance between orbits with different accuracy can be evaluated. The proposed metrics are then compared with existing common metrics to assess their applicability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Understanding flow around planetary moons via finite-time Lyapunov exponent maps Spin orbit resonance cascade via core shell model: application to Mercury and Ganymede Orbiting below the Brillouin sphere using shifted spherical harmonics Application of the theory of functional connections to the perturbed Lambert’s problem Spin–orbit coupling of the primary body in a binary asteroid system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1