未知环境下的安全反馈运动规划:一种瞬时局部控制障碍函数方法

Cong Li, Zengjie Zhang, Nesrin Ahmed, Qingchen Liu, Fangzhou Liu, Martin Buss
{"title":"未知环境下的安全反馈运动规划:一种瞬时局部控制障碍函数方法","authors":"Cong Li, Zengjie Zhang, Nesrin Ahmed, Qingchen Liu, Fangzhou Liu, Martin Buss","doi":"10.1007/s10846-023-01962-8","DOIUrl":null,"url":null,"abstract":"Abstract Mobile robots are desired with resilience to safely interact with prior-unknown environments and finally accomplish given tasks. This paper utilizes instantaneous local sensory data to stimulate the safe feedback motion planning (SFMP) strategy with adaptability to diverse prior-unknown environments without building a global map. This is achieved by the numerical optimization with the constraints, referred to as instantaneous local control barrier functions (IL-CBFs) and goal-driven control Lyapunov functions (GD-CLFs), learned from perceptional signals. In particular, the IL-CBFs reflecting potential collisions and GD-CLFs encoding incrementally discovered subgoals are first online learned from local perceptual data. Then, the learned IL-CBFs are united with GD-CLFs in the context of quadratic programming (QP) to generate the safe feedback motion planning strategy. Rather importantly, an optimization over the admissible control space of IL-CBFs is conducted to enhance the solution feasibility of QP. The SFMP strategy is developed with theoretically guaranteed collision avoidance and convergence to destinations. Numerical simulations are conducted to reveal the effectiveness of the proposed SFMP strategy that drives mobile robots to safely reach the destination incrementally in diverse prior-unknown environments.","PeriodicalId":404612,"journal":{"name":"Journal of Intelligent and Robotic Systems","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safe Feedback Motion Planning in Unknown Environments: An Instantaneous Local Control Barrier Function Approach\",\"authors\":\"Cong Li, Zengjie Zhang, Nesrin Ahmed, Qingchen Liu, Fangzhou Liu, Martin Buss\",\"doi\":\"10.1007/s10846-023-01962-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Mobile robots are desired with resilience to safely interact with prior-unknown environments and finally accomplish given tasks. This paper utilizes instantaneous local sensory data to stimulate the safe feedback motion planning (SFMP) strategy with adaptability to diverse prior-unknown environments without building a global map. This is achieved by the numerical optimization with the constraints, referred to as instantaneous local control barrier functions (IL-CBFs) and goal-driven control Lyapunov functions (GD-CLFs), learned from perceptional signals. In particular, the IL-CBFs reflecting potential collisions and GD-CLFs encoding incrementally discovered subgoals are first online learned from local perceptual data. Then, the learned IL-CBFs are united with GD-CLFs in the context of quadratic programming (QP) to generate the safe feedback motion planning strategy. Rather importantly, an optimization over the admissible control space of IL-CBFs is conducted to enhance the solution feasibility of QP. The SFMP strategy is developed with theoretically guaranteed collision avoidance and convergence to destinations. Numerical simulations are conducted to reveal the effectiveness of the proposed SFMP strategy that drives mobile robots to safely reach the destination incrementally in diverse prior-unknown environments.\",\"PeriodicalId\":404612,\"journal\":{\"name\":\"Journal of Intelligent and Robotic Systems\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent and Robotic Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10846-023-01962-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent and Robotic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10846-023-01962-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人们希望移动机器人具有弹性,能够安全地与未知环境进行交互,并最终完成给定的任务。本文利用瞬时的局部感知数据来刺激安全反馈运动规划(SFMP)策略,该策略在不构建全局地图的情况下具有对多种先验未知环境的适应性。这是通过从感知信号中学习的约束(称为瞬时局部控制屏障函数(IL-CBFs)和目标驱动控制李雅普诺夫函数(GD-CLFs))的数值优化来实现的。特别是,反映潜在碰撞的il - cbf和编码增量发现子目标的gd - clf首先从局部感知数据中在线学习。然后,在二次规划(QP)的背景下,将学习到的il - cbf与gd - clf结合,生成安全反馈运动规划策略。更重要的是,对il - cbf的允许控制空间进行了优化,以提高QP求解的可行性。SFMP策略在理论上保证了避免碰撞和收敛到目的地。通过数值仿真,验证了所提出的SFMP策略在不同先验未知环境下驱动移动机器人安全增量到达目的地的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Safe Feedback Motion Planning in Unknown Environments: An Instantaneous Local Control Barrier Function Approach
Abstract Mobile robots are desired with resilience to safely interact with prior-unknown environments and finally accomplish given tasks. This paper utilizes instantaneous local sensory data to stimulate the safe feedback motion planning (SFMP) strategy with adaptability to diverse prior-unknown environments without building a global map. This is achieved by the numerical optimization with the constraints, referred to as instantaneous local control barrier functions (IL-CBFs) and goal-driven control Lyapunov functions (GD-CLFs), learned from perceptional signals. In particular, the IL-CBFs reflecting potential collisions and GD-CLFs encoding incrementally discovered subgoals are first online learned from local perceptual data. Then, the learned IL-CBFs are united with GD-CLFs in the context of quadratic programming (QP) to generate the safe feedback motion planning strategy. Rather importantly, an optimization over the admissible control space of IL-CBFs is conducted to enhance the solution feasibility of QP. The SFMP strategy is developed with theoretically guaranteed collision avoidance and convergence to destinations. Numerical simulations are conducted to reveal the effectiveness of the proposed SFMP strategy that drives mobile robots to safely reach the destination incrementally in diverse prior-unknown environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Robust Physical Human Robot Interaction by an Adaptive Admittance Controller A Study on Networked Industrial Robots in Smart Manufacturing: Vulnerabilities, Data Integrity Attacks and Countermeasures Resilient Simultaneous Localization and Mapping Fusing Ultra Wide Band Range Measurements and Visual Odometry Theory and Application of High-Precision Preoperative Positioning for Cochlear Surgical Robot A Modified Total Energy Control Scheme for Unmanned Aircraft
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1