{"title":"负载CeO2的氧化石墨烯对NOx的吸附及其在大气污染治理中的应用","authors":"Fan Yang, Dongnan Li, Qiang Xia, Ziqi Qin, Lu Yu","doi":"10.1166/mex.2023.2529","DOIUrl":null,"url":null,"abstract":"In this study, we utilized graphene oxide (GO) loaded with cerium oxide (CeO 2 ) to synthesize GO-CeO 2 catalysts using a hydrothermal method and high-temperature calcination. The performance of the catalyst was evaluated by characterization of the catalyst material and testing for nitrogen oxide (NOx) conversion rates and nitrogen gas adsorption isotherm in mixed flue gas. The results demonstrated that increasing the ratio of NO 2 in the NO+NO 2 mixture significantly enhanced the conversion rate of NOx. Notably, when the proportion of NO 2 reached 0.4, the denitrified gas displayed a remarkable increase in NOx conversion rate, exceeding 98%. This finding highlighted that even low concentrations of NO 2 can accelerate denitrification reactions. Moreover, increasing the oxygen concentration in the gas exhibited considerable potential to elevate the NOx conversion rate. The oxygen concentration played a vital role in the process of denitrification, and the GO-CeO 2 catalyst exhibited a high oxygen storage capacity. Moreover, the GO-CeO 2 catalyst maintained a high denitrification efficiency even under high-temperature conditions and demonstrated excellent NOx conversion performance. The catalyst also demonstrated good stability and strong water resistance under varying proportions and temperatures while maintaining a consistent denitrification efficiency. These findings indicated the significant adsorption effect of the graphene oxide loaded with CeO 2 catalyst on NOx, suggesting promising potential for application and widespread use.","PeriodicalId":18318,"journal":{"name":"Materials Express","volume":"105 5","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption of NOx by graphene oxide loaded with CeO<sub>2</sub> as a catalyst for atmospheric pollution control\",\"authors\":\"Fan Yang, Dongnan Li, Qiang Xia, Ziqi Qin, Lu Yu\",\"doi\":\"10.1166/mex.2023.2529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we utilized graphene oxide (GO) loaded with cerium oxide (CeO 2 ) to synthesize GO-CeO 2 catalysts using a hydrothermal method and high-temperature calcination. The performance of the catalyst was evaluated by characterization of the catalyst material and testing for nitrogen oxide (NOx) conversion rates and nitrogen gas adsorption isotherm in mixed flue gas. The results demonstrated that increasing the ratio of NO 2 in the NO+NO 2 mixture significantly enhanced the conversion rate of NOx. Notably, when the proportion of NO 2 reached 0.4, the denitrified gas displayed a remarkable increase in NOx conversion rate, exceeding 98%. This finding highlighted that even low concentrations of NO 2 can accelerate denitrification reactions. Moreover, increasing the oxygen concentration in the gas exhibited considerable potential to elevate the NOx conversion rate. The oxygen concentration played a vital role in the process of denitrification, and the GO-CeO 2 catalyst exhibited a high oxygen storage capacity. Moreover, the GO-CeO 2 catalyst maintained a high denitrification efficiency even under high-temperature conditions and demonstrated excellent NOx conversion performance. The catalyst also demonstrated good stability and strong water resistance under varying proportions and temperatures while maintaining a consistent denitrification efficiency. These findings indicated the significant adsorption effect of the graphene oxide loaded with CeO 2 catalyst on NOx, suggesting promising potential for application and widespread use.\",\"PeriodicalId\":18318,\"journal\":{\"name\":\"Materials Express\",\"volume\":\"105 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/mex.2023.2529\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/mex.2023.2529","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
Adsorption of NOx by graphene oxide loaded with CeO2 as a catalyst for atmospheric pollution control
In this study, we utilized graphene oxide (GO) loaded with cerium oxide (CeO 2 ) to synthesize GO-CeO 2 catalysts using a hydrothermal method and high-temperature calcination. The performance of the catalyst was evaluated by characterization of the catalyst material and testing for nitrogen oxide (NOx) conversion rates and nitrogen gas adsorption isotherm in mixed flue gas. The results demonstrated that increasing the ratio of NO 2 in the NO+NO 2 mixture significantly enhanced the conversion rate of NOx. Notably, when the proportion of NO 2 reached 0.4, the denitrified gas displayed a remarkable increase in NOx conversion rate, exceeding 98%. This finding highlighted that even low concentrations of NO 2 can accelerate denitrification reactions. Moreover, increasing the oxygen concentration in the gas exhibited considerable potential to elevate the NOx conversion rate. The oxygen concentration played a vital role in the process of denitrification, and the GO-CeO 2 catalyst exhibited a high oxygen storage capacity. Moreover, the GO-CeO 2 catalyst maintained a high denitrification efficiency even under high-temperature conditions and demonstrated excellent NOx conversion performance. The catalyst also demonstrated good stability and strong water resistance under varying proportions and temperatures while maintaining a consistent denitrification efficiency. These findings indicated the significant adsorption effect of the graphene oxide loaded with CeO 2 catalyst on NOx, suggesting promising potential for application and widespread use.