{"title":"基于新型复合材料隔振垫的建筑楼板结构减振降噪研究","authors":"Li Zhang","doi":"10.1166/mex.2023.2530","DOIUrl":null,"url":null,"abstract":"The frequent occurrence of geological disasters poses a significant threat to human life and the safety of property. To enhance the seismic performance and reduce noise in buildings, this study proposes the design of building floor structures with a new composite vibration isolation pad. Carbon nanocoils/styrene-butadiene composites are utilized to create vibration reduction devices. Experimental results demonstrate that the compression set rates of carbon nanocoil composite rubber are 4.83% and 2.07% at filling amounts of 1% and 3%, respectively. Additionally, the compression set rates of carbon nanotube composite rubber are 13.79% and 6.90%, respectively. Among these materials, styrene-butadiene exhibits the most significant performance improvement when combined with carbon nano coil. With an optimal layout of 25 devices, the floor dynamic amplification coefficient can be reduced by 8.4% and the building floor noise can be reduced by approximately 75%. This optimization significantly reduces the dynamic response and also provides a certain level of noise reduction effect.","PeriodicalId":18318,"journal":{"name":"Materials Express","volume":"104 8","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibration and noise reduction for building floor structures based on new composite material vibration isolation pads\",\"authors\":\"Li Zhang\",\"doi\":\"10.1166/mex.2023.2530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The frequent occurrence of geological disasters poses a significant threat to human life and the safety of property. To enhance the seismic performance and reduce noise in buildings, this study proposes the design of building floor structures with a new composite vibration isolation pad. Carbon nanocoils/styrene-butadiene composites are utilized to create vibration reduction devices. Experimental results demonstrate that the compression set rates of carbon nanocoil composite rubber are 4.83% and 2.07% at filling amounts of 1% and 3%, respectively. Additionally, the compression set rates of carbon nanotube composite rubber are 13.79% and 6.90%, respectively. Among these materials, styrene-butadiene exhibits the most significant performance improvement when combined with carbon nano coil. With an optimal layout of 25 devices, the floor dynamic amplification coefficient can be reduced by 8.4% and the building floor noise can be reduced by approximately 75%. This optimization significantly reduces the dynamic response and also provides a certain level of noise reduction effect.\",\"PeriodicalId\":18318,\"journal\":{\"name\":\"Materials Express\",\"volume\":\"104 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/mex.2023.2530\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/mex.2023.2530","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
Vibration and noise reduction for building floor structures based on new composite material vibration isolation pads
The frequent occurrence of geological disasters poses a significant threat to human life and the safety of property. To enhance the seismic performance and reduce noise in buildings, this study proposes the design of building floor structures with a new composite vibration isolation pad. Carbon nanocoils/styrene-butadiene composites are utilized to create vibration reduction devices. Experimental results demonstrate that the compression set rates of carbon nanocoil composite rubber are 4.83% and 2.07% at filling amounts of 1% and 3%, respectively. Additionally, the compression set rates of carbon nanotube composite rubber are 13.79% and 6.90%, respectively. Among these materials, styrene-butadiene exhibits the most significant performance improvement when combined with carbon nano coil. With an optimal layout of 25 devices, the floor dynamic amplification coefficient can be reduced by 8.4% and the building floor noise can be reduced by approximately 75%. This optimization significantly reduces the dynamic response and also provides a certain level of noise reduction effect.