{"title":"甲状腺滤泡细胞质膜上碘化钠同转运蛋白表达的分子机制","authors":"Gerardo Hernán Carro , Juan Pablo Nicola","doi":"10.1016/j.coemr.2023.100492","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Sodium iodide symporter (NIS)-mediated </span>radioiodine<span><span> accumulation in thyroid cancer cells is the cornerstone of </span>radioiodine therapy for </span></span>differentiated thyroid cancer<span><span>. A recurring limitation of radioiodine therapy is the development of radioiodine-refractory metastatic thyroid cancer. Thyroid cancer cell dedifferentiation is the major cause of loss of radioiodine accumulation, resulting in a decreased NIS plasma membrane expression involving a plethora of transcriptional, post-transcriptional, and post-translational mechanisms. Immunohistochemical analysis revealed that most differentiated thyroid tumors preserve NIS </span>protein expression, but NIS is often retained intracellularly, suggesting the presence of post-translational mechanisms that repress NIS plasma membrane expression. This review aims to discuss the current knowledge regarding the post-translational mechanisms that regulate NIS trafficking to the plasma membrane under physiological and pathological conditions. A thorough understanding of the molecular mechanisms underlying NIS expression at the plasma membrane would have multiple implications for radioiodine therapy, a pursuit that could uncover novel therapeutic interventions for radioiodine-refractory thyroid tumors.</span></p></div>","PeriodicalId":52218,"journal":{"name":"Current Opinion in Endocrine and Metabolic Research","volume":"33 ","pages":"Article 100492"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular mechanisms underlying sodium iodide symporter expression at the plasma membrane in the thyroid follicular cell\",\"authors\":\"Gerardo Hernán Carro , Juan Pablo Nicola\",\"doi\":\"10.1016/j.coemr.2023.100492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Sodium iodide symporter (NIS)-mediated </span>radioiodine<span><span> accumulation in thyroid cancer cells is the cornerstone of </span>radioiodine therapy for </span></span>differentiated thyroid cancer<span><span>. A recurring limitation of radioiodine therapy is the development of radioiodine-refractory metastatic thyroid cancer. Thyroid cancer cell dedifferentiation is the major cause of loss of radioiodine accumulation, resulting in a decreased NIS plasma membrane expression involving a plethora of transcriptional, post-transcriptional, and post-translational mechanisms. Immunohistochemical analysis revealed that most differentiated thyroid tumors preserve NIS </span>protein expression, but NIS is often retained intracellularly, suggesting the presence of post-translational mechanisms that repress NIS plasma membrane expression. This review aims to discuss the current knowledge regarding the post-translational mechanisms that regulate NIS trafficking to the plasma membrane under physiological and pathological conditions. A thorough understanding of the molecular mechanisms underlying NIS expression at the plasma membrane would have multiple implications for radioiodine therapy, a pursuit that could uncover novel therapeutic interventions for radioiodine-refractory thyroid tumors.</span></p></div>\",\"PeriodicalId\":52218,\"journal\":{\"name\":\"Current Opinion in Endocrine and Metabolic Research\",\"volume\":\"33 \",\"pages\":\"Article 100492\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Endocrine and Metabolic Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451965023000595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Endocrine and Metabolic Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451965023000595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular mechanisms underlying sodium iodide symporter expression at the plasma membrane in the thyroid follicular cell
Sodium iodide symporter (NIS)-mediated radioiodine accumulation in thyroid cancer cells is the cornerstone of radioiodine therapy for differentiated thyroid cancer. A recurring limitation of radioiodine therapy is the development of radioiodine-refractory metastatic thyroid cancer. Thyroid cancer cell dedifferentiation is the major cause of loss of radioiodine accumulation, resulting in a decreased NIS plasma membrane expression involving a plethora of transcriptional, post-transcriptional, and post-translational mechanisms. Immunohistochemical analysis revealed that most differentiated thyroid tumors preserve NIS protein expression, but NIS is often retained intracellularly, suggesting the presence of post-translational mechanisms that repress NIS plasma membrane expression. This review aims to discuss the current knowledge regarding the post-translational mechanisms that regulate NIS trafficking to the plasma membrane under physiological and pathological conditions. A thorough understanding of the molecular mechanisms underlying NIS expression at the plasma membrane would have multiple implications for radioiodine therapy, a pursuit that could uncover novel therapeutic interventions for radioiodine-refractory thyroid tumors.