{"title":"2.3 GHz、2.4 GHz和3.5 GHz多频带矩形贴片微带天线设计","authors":"None Katsirotin, V Rahayu","doi":"10.1088/1742-6596/2623/1/012018","DOIUrl":null,"url":null,"abstract":"Abstract Cellular developments encourage the integration of both 4G, Wi-Fi, and 5G network technologies into one device; an antenna is a tool that can be used to support the integration of these networks. A microstrip antenna is an antenna that is small, light, thin, easy to fabricate, and can be used in long ranges. In this paper, a microstrip antenna is designed on a printed circuit board (PCB) with a permittivity of 4.3 and a thickness of 1.6 mm. This research aims to design a microstrip antenna that is capable of working on 4G (2.3 GHz), Wi-Fi (2.4 GHz), and 5G 3.5 GHZ) frequencies in one antenna. The microstrip antenna is designed on a Printed Circuit Board (PCB) with a permittivity of 4.3 and a thickness of 1.6 mm, rectangular shaped patches, and each patch is connected using a bridging method. Next, the antenna is simulated using CST Suite 2021 software. Simulation results at frequencies of 2.3 GHz, 2.4 GHz, and 3.5 GHz produce return losses of -23.70, -22.87, and -20.60, VSWR values of 1, respectively. .13, 1.15, and 1.20, the bandwidth values are 6.27%, 3.84%, and 5.84%, respectively, and the gain values are 4.69 dBi, 8.53 dBi, and 3.49 dBi.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Multi-band Microstrip Antenna with Rectangular Patch for 2.3 GHz, 2.4 GHz, and 3.5 GHz Frequencies\",\"authors\":\"None Katsirotin, V Rahayu\",\"doi\":\"10.1088/1742-6596/2623/1/012018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Cellular developments encourage the integration of both 4G, Wi-Fi, and 5G network technologies into one device; an antenna is a tool that can be used to support the integration of these networks. A microstrip antenna is an antenna that is small, light, thin, easy to fabricate, and can be used in long ranges. In this paper, a microstrip antenna is designed on a printed circuit board (PCB) with a permittivity of 4.3 and a thickness of 1.6 mm. This research aims to design a microstrip antenna that is capable of working on 4G (2.3 GHz), Wi-Fi (2.4 GHz), and 5G 3.5 GHZ) frequencies in one antenna. The microstrip antenna is designed on a Printed Circuit Board (PCB) with a permittivity of 4.3 and a thickness of 1.6 mm, rectangular shaped patches, and each patch is connected using a bridging method. Next, the antenna is simulated using CST Suite 2021 software. Simulation results at frequencies of 2.3 GHz, 2.4 GHz, and 3.5 GHz produce return losses of -23.70, -22.87, and -20.60, VSWR values of 1, respectively. .13, 1.15, and 1.20, the bandwidth values are 6.27%, 3.84%, and 5.84%, respectively, and the gain values are 4.69 dBi, 8.53 dBi, and 3.49 dBi.\",\"PeriodicalId\":44008,\"journal\":{\"name\":\"Journal of Physics-Photonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics-Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-6596/2623/1/012018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2623/1/012018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Design of Multi-band Microstrip Antenna with Rectangular Patch for 2.3 GHz, 2.4 GHz, and 3.5 GHz Frequencies
Abstract Cellular developments encourage the integration of both 4G, Wi-Fi, and 5G network technologies into one device; an antenna is a tool that can be used to support the integration of these networks. A microstrip antenna is an antenna that is small, light, thin, easy to fabricate, and can be used in long ranges. In this paper, a microstrip antenna is designed on a printed circuit board (PCB) with a permittivity of 4.3 and a thickness of 1.6 mm. This research aims to design a microstrip antenna that is capable of working on 4G (2.3 GHz), Wi-Fi (2.4 GHz), and 5G 3.5 GHZ) frequencies in one antenna. The microstrip antenna is designed on a Printed Circuit Board (PCB) with a permittivity of 4.3 and a thickness of 1.6 mm, rectangular shaped patches, and each patch is connected using a bridging method. Next, the antenna is simulated using CST Suite 2021 software. Simulation results at frequencies of 2.3 GHz, 2.4 GHz, and 3.5 GHz produce return losses of -23.70, -22.87, and -20.60, VSWR values of 1, respectively. .13, 1.15, and 1.20, the bandwidth values are 6.27%, 3.84%, and 5.84%, respectively, and the gain values are 4.69 dBi, 8.53 dBi, and 3.49 dBi.