亲/疏水微结构的冷凝换热性能实验研究

IF 4.6 Q1 OPTICS Journal of Physics-Photonics Pub Date : 2023-11-01 DOI:10.1088/1742-6596/2636/1/012048
Zhiwei He, Enlong Wen, Tao Wang, Chao Huang, Shujie Li, Ruhua Cai
{"title":"亲/疏水微结构的冷凝换热性能实验研究","authors":"Zhiwei He, Enlong Wen, Tao Wang, Chao Huang, Shujie Li, Ruhua Cai","doi":"10.1088/1742-6596/2636/1/012048","DOIUrl":null,"url":null,"abstract":"Abstract In order to study the condensation and heat transfer characteristics of similar microstructure surfaces, two similar microstructure surfaces, cylindrical and circular, were fabricated by femtosecond laser technology on a 0.5 mm silicon wafer. The cylindrical surface is superhydrophobic when the contact angle is more than 150°, and the circular surface is hydrophilic when the contact angle is less than 90°. The difference in condensation heat transfer characteristics between superhydrophobic and hydrophilic microstructures was analyzed, and a visual condensation experimental platform was built. Experimental research showed that: At the same flow rate, the heat transfer coefficient of the superhydrophobic surface and the hydrophilic surface decreases significantly with the increase of the surface subcooling degree, but the heat transfer coefficient of the cylindrical surface is still much larger than that of the circular surface. In addition, the heat transfer performance of the hydrophobic microstructure surface is better than that of the hydrophilic surface at medium and high-speed cooling water flow rates. Although the surface microstructures are similar in shape, the heat transfer performance of cylindrical microstructures is much better than that of circular microstructures under the same conditions, and the heat flux of cylindrical microstructures is 2.2 times that of circular microstructures.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study on Condensation Heat Transfer Performance of Hydrophilic/Hydrophobic Microstructured\",\"authors\":\"Zhiwei He, Enlong Wen, Tao Wang, Chao Huang, Shujie Li, Ruhua Cai\",\"doi\":\"10.1088/1742-6596/2636/1/012048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In order to study the condensation and heat transfer characteristics of similar microstructure surfaces, two similar microstructure surfaces, cylindrical and circular, were fabricated by femtosecond laser technology on a 0.5 mm silicon wafer. The cylindrical surface is superhydrophobic when the contact angle is more than 150°, and the circular surface is hydrophilic when the contact angle is less than 90°. The difference in condensation heat transfer characteristics between superhydrophobic and hydrophilic microstructures was analyzed, and a visual condensation experimental platform was built. Experimental research showed that: At the same flow rate, the heat transfer coefficient of the superhydrophobic surface and the hydrophilic surface decreases significantly with the increase of the surface subcooling degree, but the heat transfer coefficient of the cylindrical surface is still much larger than that of the circular surface. In addition, the heat transfer performance of the hydrophobic microstructure surface is better than that of the hydrophilic surface at medium and high-speed cooling water flow rates. Although the surface microstructures are similar in shape, the heat transfer performance of cylindrical microstructures is much better than that of circular microstructures under the same conditions, and the heat flux of cylindrical microstructures is 2.2 times that of circular microstructures.\",\"PeriodicalId\":44008,\"journal\":{\"name\":\"Journal of Physics-Photonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics-Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-6596/2636/1/012048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2636/1/012048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要为了研究相似微结构表面的凝结和传热特性,利用飞秒激光技术在0.5 mm硅片上制备了圆柱形和圆形两个相似微结构表面。当接触角大于150°时,圆柱形表面是超疏水的,当接触角小于90°时,圆形表面是亲水的。分析了超疏水与亲水微观结构的冷凝换热特性差异,搭建了可视化冷凝实验平台。实验研究表明:在相同流量下,超疏水表面和亲水表面的换热系数随着表面过冷度的增加而显著降低,但圆柱形表面的换热系数仍然远大于圆形表面。此外,在中高速冷却水流量下,疏水微观结构表面的换热性能优于亲水性表面。尽管表面微结构形状相似,但在相同条件下,圆柱形微结构的传热性能远优于圆形微结构,其热流密度是圆形微结构的2.2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Study on Condensation Heat Transfer Performance of Hydrophilic/Hydrophobic Microstructured
Abstract In order to study the condensation and heat transfer characteristics of similar microstructure surfaces, two similar microstructure surfaces, cylindrical and circular, were fabricated by femtosecond laser technology on a 0.5 mm silicon wafer. The cylindrical surface is superhydrophobic when the contact angle is more than 150°, and the circular surface is hydrophilic when the contact angle is less than 90°. The difference in condensation heat transfer characteristics between superhydrophobic and hydrophilic microstructures was analyzed, and a visual condensation experimental platform was built. Experimental research showed that: At the same flow rate, the heat transfer coefficient of the superhydrophobic surface and the hydrophilic surface decreases significantly with the increase of the surface subcooling degree, but the heat transfer coefficient of the cylindrical surface is still much larger than that of the circular surface. In addition, the heat transfer performance of the hydrophobic microstructure surface is better than that of the hydrophilic surface at medium and high-speed cooling water flow rates. Although the surface microstructures are similar in shape, the heat transfer performance of cylindrical microstructures is much better than that of circular microstructures under the same conditions, and the heat flux of cylindrical microstructures is 2.2 times that of circular microstructures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
0.00%
发文量
27
审稿时长
12 weeks
期刊最新文献
Wavefront shaping simulations with augmented partial factorization An efficient compact blazed grating antenna for optical phased arrays Highly reflective and high-Q thin resonant subwavelength gratings A practical guide to digital micro-mirror devices (DMDs) for wavefront shaping A modular GUI-based program for genetic algorithm-based feedback-assisted wavefront shaping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1