{"title":"从流动性风险到系统性风险:知识图谱的应用","authors":"Ren-Raw Chen , Xiaohu Zhang","doi":"10.1016/j.jfs.2023.101195","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper, we use knowledge graph (KG) to study systemic risk in the banking industry. KG provides a graphic representation of the connections of entities of interest (known as vertices or nodes) with the strengths of connections being reflected by the lines connecting them (known as edges) or distances between them. As a result, KG is a natural tool for visualizing the relationships among </span>financial institutions<span>. Furthermore, various data and graph choices can present how differently entities of interest can be connected. In this paper, we draw KGs on two datasets: liquidity index and volatility and three different embedding methods: locally linear embedding, spectral embedding and principal component analysis. Our empirical results show, not surprisingly, that volatility and liquidity index are not similar in explaining how banks are connected. Embedding methods also matter.</span></p></div>","PeriodicalId":48027,"journal":{"name":"Journal of Financial Stability","volume":"70 ","pages":"Article 101195"},"PeriodicalIF":6.1000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From liquidity risk to systemic risk: A use of knowledge graph\",\"authors\":\"Ren-Raw Chen , Xiaohu Zhang\",\"doi\":\"10.1016/j.jfs.2023.101195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this paper, we use knowledge graph (KG) to study systemic risk in the banking industry. KG provides a graphic representation of the connections of entities of interest (known as vertices or nodes) with the strengths of connections being reflected by the lines connecting them (known as edges) or distances between them. As a result, KG is a natural tool for visualizing the relationships among </span>financial institutions<span>. Furthermore, various data and graph choices can present how differently entities of interest can be connected. In this paper, we draw KGs on two datasets: liquidity index and volatility and three different embedding methods: locally linear embedding, spectral embedding and principal component analysis. Our empirical results show, not surprisingly, that volatility and liquidity index are not similar in explaining how banks are connected. Embedding methods also matter.</span></p></div>\",\"PeriodicalId\":48027,\"journal\":{\"name\":\"Journal of Financial Stability\",\"volume\":\"70 \",\"pages\":\"Article 101195\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Financial Stability\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572308923000955\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial Stability","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572308923000955","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
From liquidity risk to systemic risk: A use of knowledge graph
In this paper, we use knowledge graph (KG) to study systemic risk in the banking industry. KG provides a graphic representation of the connections of entities of interest (known as vertices or nodes) with the strengths of connections being reflected by the lines connecting them (known as edges) or distances between them. As a result, KG is a natural tool for visualizing the relationships among financial institutions. Furthermore, various data and graph choices can present how differently entities of interest can be connected. In this paper, we draw KGs on two datasets: liquidity index and volatility and three different embedding methods: locally linear embedding, spectral embedding and principal component analysis. Our empirical results show, not surprisingly, that volatility and liquidity index are not similar in explaining how banks are connected. Embedding methods also matter.
期刊介绍:
The Journal of Financial Stability provides an international forum for rigorous theoretical and empirical macro and micro economic and financial analysis of the causes, management, resolution and preventions of financial crises, including banking, securities market, payments and currency crises. The primary focus is on applied research that would be useful in affecting public policy with respect to financial stability. Thus, the Journal seeks to promote interaction among researchers, policy-makers and practitioners to identify potential risks to financial stability and develop means for preventing, mitigating or managing these risks both within and across countries.