基于GPGPU的本地节点连通性计算优化研究

Soo-Ho Jang, Sookwang Lee, Jaehwan Lee
{"title":"基于GPGPU的本地节点连通性计算优化研究","authors":"Soo-Ho Jang, Sookwang Lee, Jaehwan Lee","doi":"10.5302/j.icros.2023.23.0102","DOIUrl":null,"url":null,"abstract":"The local node connectivity of a graph indicates its stability and robustness as well as the importance of its vertices. This study presents the process and results of designing local node connectivity computation algorithms for graphs using parallel processing in GPGPU (General-Purpose computing on Graphics Processing Units). These algorithms focus on reducing latency by optimizing the computation for finding the shortest paths. Here, the algorithms “Variable Threads” and “Fixed Threads” are proposed and compared with a CPU-based baseline algorithm. Experimental results show that the GPU-based approach achieved latency reductions of up to 37% and 15% in sparse and dense graphs, respectively. These findings elucidate the effectiveness of parallel processing on GPUs for improving the efficiency of local node connectivity computations.","PeriodicalId":38644,"journal":{"name":"Journal of Institute of Control, Robotics and Systems","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the Optimization of Local Node Connectivity Computation Using GPGPU\",\"authors\":\"Soo-Ho Jang, Sookwang Lee, Jaehwan Lee\",\"doi\":\"10.5302/j.icros.2023.23.0102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The local node connectivity of a graph indicates its stability and robustness as well as the importance of its vertices. This study presents the process and results of designing local node connectivity computation algorithms for graphs using parallel processing in GPGPU (General-Purpose computing on Graphics Processing Units). These algorithms focus on reducing latency by optimizing the computation for finding the shortest paths. Here, the algorithms “Variable Threads” and “Fixed Threads” are proposed and compared with a CPU-based baseline algorithm. Experimental results show that the GPU-based approach achieved latency reductions of up to 37% and 15% in sparse and dense graphs, respectively. These findings elucidate the effectiveness of parallel processing on GPUs for improving the efficiency of local node connectivity computations.\",\"PeriodicalId\":38644,\"journal\":{\"name\":\"Journal of Institute of Control, Robotics and Systems\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Institute of Control, Robotics and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5302/j.icros.2023.23.0102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Institute of Control, Robotics and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5302/j.icros.2023.23.0102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

图的局部节点连通性表明图的稳定性和鲁棒性,以及图中顶点的重要性。本文介绍了在GPGPU (General-Purpose computing on Graphics processing Units)中使用并行处理设计图形局部节点连通性计算算法的过程和结果。这些算法的重点是通过优化寻找最短路径的计算来减少延迟。本文提出了“可变线程”和“固定线程”算法,并与基于cpu的基准算法进行了比较。实验结果表明,基于gpu的方法在稀疏图和密集图上的延迟分别减少了37%和15%。这些发现阐明了gpu并行处理对于提高本地节点连通性计算效率的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on the Optimization of Local Node Connectivity Computation Using GPGPU
The local node connectivity of a graph indicates its stability and robustness as well as the importance of its vertices. This study presents the process and results of designing local node connectivity computation algorithms for graphs using parallel processing in GPGPU (General-Purpose computing on Graphics Processing Units). These algorithms focus on reducing latency by optimizing the computation for finding the shortest paths. Here, the algorithms “Variable Threads” and “Fixed Threads” are proposed and compared with a CPU-based baseline algorithm. Experimental results show that the GPU-based approach achieved latency reductions of up to 37% and 15% in sparse and dense graphs, respectively. These findings elucidate the effectiveness of parallel processing on GPUs for improving the efficiency of local node connectivity computations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
128
期刊最新文献
Proposal of MRFScore and a Regression Model for Identification of Music Relationship Indicator Mixed Reality-based Structure Placement Verification System Using AR Marker Optimal Parameter Estimation for Topological Descriptor Based Sonar Image Matching in Autonomous Underwater Robots 3D Space Object and Road Detection for Autonomous Vehicles Using Monocular Camera Images and Deep Learning Algorithms Optimization Methods for Non-linear Least Squares
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1