基于AIS数据和支持向量回归的真船水动力系数估计

Hoang Thien Vu, Jongyeol Park, Hyeon Kyu Yoon
{"title":"基于AIS数据和支持向量回归的真船水动力系数估计","authors":"Hoang Thien Vu, Jongyeol Park, Hyeon Kyu Yoon","doi":"10.26748/ksoe.2023.019","DOIUrl":null,"url":null,"abstract":"In response to the complexity and time demands of conventional methods for estimating the hydrodynamic coefficients, this study aims to revolutionize ship maneuvering analysis by utilizing automatic identification system (AIS) data and the Support Vector Regression (SVR) algorithm. The AIS data were collected and processed to remove outliers and impute missing values. The rate of turn (ROT), speed over ground (SOG), course over ground (COG) and heading (HDG) in AIS data were used to calculate the rudder angle and ship velocity components, which were then used as training data for a regression model. The accuracy and efficiency of the algorithm were validated by comparing SVR-based estimated hydrodynamic coefficients and the original hydrodynamic coefficients of the Mariner class vessel. The validated SVR algorithm was then applied to estimate the hydrodynamic coefficients for real ships using AIS data. The turning circle test wassimulated from calculated hydrodynamic coefficients and compared with the AIS data. The research results demonstrate the effectiveness of the SVR model in accurately estimating the hydrodynamic coefficients from the AIS data. In conclusion, this study proposes the viability of employing SVR model and AIS data for accurately estimating the hydrodynamic coefficients. It offers a practical approach to ship maneuvering prediction and control in the maritime industry.","PeriodicalId":315103,"journal":{"name":"Journal of Ocean Engineering and Technology","volume":"14 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Hydrodynamic Coefficients of Real Ships using AIS Data and Support Vector Regression\",\"authors\":\"Hoang Thien Vu, Jongyeol Park, Hyeon Kyu Yoon\",\"doi\":\"10.26748/ksoe.2023.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In response to the complexity and time demands of conventional methods for estimating the hydrodynamic coefficients, this study aims to revolutionize ship maneuvering analysis by utilizing automatic identification system (AIS) data and the Support Vector Regression (SVR) algorithm. The AIS data were collected and processed to remove outliers and impute missing values. The rate of turn (ROT), speed over ground (SOG), course over ground (COG) and heading (HDG) in AIS data were used to calculate the rudder angle and ship velocity components, which were then used as training data for a regression model. The accuracy and efficiency of the algorithm were validated by comparing SVR-based estimated hydrodynamic coefficients and the original hydrodynamic coefficients of the Mariner class vessel. The validated SVR algorithm was then applied to estimate the hydrodynamic coefficients for real ships using AIS data. The turning circle test wassimulated from calculated hydrodynamic coefficients and compared with the AIS data. The research results demonstrate the effectiveness of the SVR model in accurately estimating the hydrodynamic coefficients from the AIS data. In conclusion, this study proposes the viability of employing SVR model and AIS data for accurately estimating the hydrodynamic coefficients. It offers a practical approach to ship maneuvering prediction and control in the maritime industry.\",\"PeriodicalId\":315103,\"journal\":{\"name\":\"Journal of Ocean Engineering and Technology\",\"volume\":\"14 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ocean Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26748/ksoe.2023.019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ocean Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26748/ksoe.2023.019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对传统水动力系数估计方法的复杂性和时间要求,本研究旨在利用自动识别系统(AIS)数据和支持向量回归(SVR)算法来彻底改变船舶操纵分析。收集AIS数据并进行处理以去除异常值并估算缺失值。利用AIS数据中的转弯率(rate of turn, ROT)、对地速度(speed over ground, SOG)、对地航向(course over ground, COG)和航向(heading, HDG)计算舵角和船速分量,并将其作为回归模型的训练数据。通过将基于svr的估计水动力系数与水手级船舶的原始水动力系数进行比较,验证了算法的准确性和有效性。将验证后的SVR算法应用于实际船舶的AIS数据水动力系数估计。利用计算得到的水动力系数对转弯试验进行了模拟,并与AIS数据进行了比较。研究结果表明,SVR模型能够准确地从AIS数据中估计水动力系数。综上所述,本研究提出了利用SVR模型和AIS数据准确估计水动力系数的可行性。为航运业船舶操纵预测与控制提供了一种实用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimating Hydrodynamic Coefficients of Real Ships using AIS Data and Support Vector Regression
In response to the complexity and time demands of conventional methods for estimating the hydrodynamic coefficients, this study aims to revolutionize ship maneuvering analysis by utilizing automatic identification system (AIS) data and the Support Vector Regression (SVR) algorithm. The AIS data were collected and processed to remove outliers and impute missing values. The rate of turn (ROT), speed over ground (SOG), course over ground (COG) and heading (HDG) in AIS data were used to calculate the rudder angle and ship velocity components, which were then used as training data for a regression model. The accuracy and efficiency of the algorithm were validated by comparing SVR-based estimated hydrodynamic coefficients and the original hydrodynamic coefficients of the Mariner class vessel. The validated SVR algorithm was then applied to estimate the hydrodynamic coefficients for real ships using AIS data. The turning circle test wassimulated from calculated hydrodynamic coefficients and compared with the AIS data. The research results demonstrate the effectiveness of the SVR model in accurately estimating the hydrodynamic coefficients from the AIS data. In conclusion, this study proposes the viability of employing SVR model and AIS data for accurately estimating the hydrodynamic coefficients. It offers a practical approach to ship maneuvering prediction and control in the maritime industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Storm Waves Caused by Typhoon Bolaven (1215) on Korean Coast: A Comparative Analysis with Deepwater Design Waves Development of Strength Evaluation Methodology for Independent IMO TYPE C Tank with LH2 Carriers Optimization Analysis of the Shape and Position of a Submerged Breakwater for Improving Floating Body Stability Investigation of Seakeeping Performance of Trawler by the Influence of the Principal Particulars of Ships in the Bering Sea Numerical Investigation of Motion Response of the Tanker at Varying Vertical Center of Gravities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1